

Electrochemical Reversible Formation of Alane

Ragaiy Zidan (PI) Brenda Garcia, Andrew Harter, Ashley Stowe, Josh Gray

Savannah River National Laboratory June 13, 2008

Project ID STP19

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Overview

Timeline

- Start: 10/01/2006
- End: In Progress
- Percent Complete: 20%

Barriers

- Store hydrogen required for conventional driving range (greater than 300)
- The weight, volume and cost of these systems

Technical Targets

- System Gravimetric Capacity > 6 %
- Storage System Cost < 30 % of hydrogen cost

Budget

- 250K Funding received in FY07
- 400 K Funding for FY08

- Brookhaven National Laboratory
- University of Hawaii

Objectives

Develop a low-cost rechargeable hydrogen storage material with cyclic stability and favorable thermodynamics and kinetics fulfilling the DOE onboard hydrogen transportation goals

Aluminum hydride (Alane- AlH₃), having a gravimetric capacity of 10wt% and volumetric capacity of 149 g/L H₂ and desorption temperature: ~60°C to 175°C (depending on particle size) meets the 2010 DOE targets for desorption

Specific Objectives

- Avoid the impractical high pressure needed to form AlH₃ by utilizing electrolytic potential to increase hydrogen activity and/ or drive chemical reactions to recharge AlH₃
- The process used is based on Gibbs free energy and Faraday's equation

Milestones

Key Milestone

Quantify formation reaction yield, determine energy requirements and demonstrate feasibility of electrolytically charging/forming alane

Specific Milestones:

- Design/build Ambient Pressure Cell (APC) Test Matrix
- Complete APC 2nd Test Matrix
- Complete Elevated Pressure Cell (EPC) 1st Test Matrix Go/NoGo Decision on SRNL Charging Process

Following FY07 activities a **GO** decision was made and determined that the potential of this material and process to meet > 8 wt% hydrogen capacity under reasonable operating conditions should be further investigated. Additional work in FY08-09 will include optimization of both the process and the material purity as well as examinations into coatings to improve material handling and safety.

AIH₃ **Electrochemical Recharging**

Motivation: Electrochemical recharging represents a very different, promising and complementary approach to AIH_3 recharging.

AI +
$$3/2 H_2 \rightarrow AIH_3$$

Approach:

Utilize electrolytic potential, E, to increase hydrogen activity to hydrogenate AI. Based on Gibbs free energy and Faraday equation:

$$\Delta G = -nFE \qquad \qquad \mathbf{E} = -\frac{\mathbf{RT}}{nF}\ln\left(f\right)$$

<u>Concern:</u> Because AI and AIH₃ will be oxidized in an aqueous environment, protection of the AI surface from water/oxygen must be achieved by either using coating such as Pd, or using non-aqueous solvents:

- > Ambient Pressure Non-Aqueous Electrochemical Cell
- > Elevated Pressure Non-Aqueous Electrochemical Cell

Thermodynamic Bases for Regeneration

(Avoiding Thermodynamic Sink)

Electrochemical synthesis is analogous to direct chemical means...

 $\Delta G = \Delta H - T\Delta S$ (Gibb's Equation) $RTInP = \Delta H - T\Delta S$

(van't hoff Equation)

$\Delta G = \Delta H - T\Delta S = - nFE$

RTInP = - nFE

(Electrochemical Analogue)

We know there are at least 3 phases of AIH_3 with different enthalpies of formation. We want the α phase, the most usable phase.

To select for the enthalpy of the α phase, we need to control T (mostly), and E.

Direct link between E (electrochemical potential), T (temperature) and the ΔH of the formation.

Ambient Pressure Aqueous Cell

- Load Pd/Ag tube with dehydrided AIH₃
- 5 volts (Max)
- 50 mA (Max)
- 5 hr

H₂ bubbles were Observed at cathode

AIH₃ was NOT detected

Non-Aqueous Ionic Solution system 1

- Utilizing Polar Conductive Solution (LiAlH₄, NaAlH₄, KAlH₄) in THF or Ether
- Example: NaAIH4/THF \longleftarrow Na⁺/AIH₄⁻/THF

- $3 \text{AlH}_4^- + \text{Al}^+ (\text{Cathode}) \longrightarrow 4\text{AlH}_3 (\text{Combined with Ether})$ Electrode is expected to dissolve
- Na⁺ + H⁻/ Pt (Anode) → NaH
 - Bubbled hydrogen H2 —→ 2H

Non-Aqueous Solution system 1

(LiAIH₄, NaAIH₄, KAIH₄)/THF or Ether

Non-Aqueous Ionic Solution system 2

Status at 3/2007:

- Built facility
- Established electrochemical approach (Non Aqueous Electrolyte, Elevated Pressure Cell)
- > Seen initial AIH_3 in early experiments

Since 3/2007:

- Modified electrochemical cell design and materials to achieve larger quantities of AIH₃
- Demonstrated feasibility of electrolytically forming AlH₃ (larger quantities)
- Devise and conduct experiments to understand the mechanism of any reactions taking place and show theoretical production capability
- Characterized reaction products with XRD and other methods
- Quantified yield and efficiencies of recharging reaction

Go Decision on SRNL Charging Process was made at the end of FY 2007, based on charging efficiencies, product yield, process conditions

Results

Cell Thermodynamics

Translating Chemical Energy into Electrical energy

Cell Potential $NaAlH_4 \leftrightarrow (AlH_4^- + Na^+)/Solution$ $NaAlH_4 \leftrightarrow AlH_3(H)^- + Na^+$ $NaAlH_4 \leftrightarrow AlH_3 + \frac{1}{2}H_2 + e^- + Na^+ E_{an}^0 = -1.73V$ $\frac{1}{2}H_2 + Na^+ + e^- \leftrightarrow NaH E_{ca}^0 = -2.37V$ $NaAlH_4 \approx AlH_3 + NaH \Delta G_{cell}^0 = 61.2kJ E_{cell}^0 = -0.64V$

$$3NaAlH_4 + Al + \frac{3}{2}H_2 \leftrightarrow 4AlH_3 + 3NaH \quad \Delta G_{cell}^0 = 154kJ \quad E_{cell}^0 = -0.80V$$
$$Al + \frac{3}{2}H_2 \leftrightarrow AlH_3 \quad \Delta G_{cell}^0 = 46.5kJ \quad E_{cell}^0 = -0.16V$$

Results

Alane Production Cyclic Voltammetry (CV)

Voltage vs. NHE (V)

Bulk Electrolysis for AlH₃ Production

Results

Alane Conversion

$$AlH_{4}^{-} = AlH_{3}(H^{-}) = AlH_{3} + \frac{1}{2}H_{2} + e^{-}$$
$$AlH_{3} + \frac{1}{2}H_{2} + Na^{+} + e^{-} \leftrightarrow NaAlH_{4} \quad E^{0} = -1.73V$$

 $nF = 96500 C / mol AIH_{3}$

Original Solution

 $85 \text{ mL} \cdot 0.5 \text{ M} = 42.5 \text{ mmol NaAlH}_4$

Results

For 59.8 C of charge passed during reaction

 $\frac{59.8}{96,500} = 0.62 \text{ mmol AlH}_3$

 $\frac{0.62}{42.5} = 1.4\%$ conversion

Dendrites Formation in Cell

Desired Reaction

$$\frac{1}{2}H_2 + Na^+ + e^- \leftrightarrow NaH \quad E_{ca}^0 = -2.37V$$

Fraction Charge/Molar and Formation of Dendrites

$$\frac{3}{2}NaAlH_4 + \frac{3}{2}Na^+ + \frac{3}{2}e^- \rightarrow Na_3AlH_6 + \frac{1}{2}Al$$

$$NaAlH_4 + Na^+ + e^- \rightarrow \frac{3}{2}Na_3AlH_6 + \frac{1}{2}Al$$

Dendrites composition is consistent with our theory based on x-ray measurements

Accomplishments/Progress/ Results

Electrochemical Alane Formation Energy-1

- Work = $\mathbf{Q} \cdot \mathbf{V}$
- nF = 289,000 C / mol AIH₂
- $nF \cdot E^{\circ}_{cell} = 61.2 \text{ kJ} / \text{mol AlH}_3$ (ideal)

$$NaAlH_{4} \leftrightarrow AlH_{4}^{-} + Na^{+}$$

$$\frac{1}{2}H_{2} + Na^{+} + e^{-} \leftrightarrow NaH \quad E_{ca}^{0} = -2.37V$$

$$NaAlH_{4} \leftrightarrow AlH_{3} + \frac{1}{2}H_{2} + e^{-} + Na^{+} \quad E_{an}^{0} = -1.73V$$

 $NaAlH_4 \approx AlH_3 + NaH \quad \Delta G_{cell}^0 = 61.2kJ \quad E_{cell}^0 = -0.64V$

Basis

5.66 kWh_e / kg H₂

Comparison

*H₂ Liquefaction: 12.5 - 15 kWh, / kg H₂

 $*H_2$ Compression: 2.6 – 3.6 kWh_e / kg H₂ (7000 psig)

*Source: PraxAir 2003

@ $0.05 / kWh = 0.28 / kg H_2$ (ideal case)

Accomplishments/Progress/ Results

Electrochemical Alane Formation Energy-2

$$\frac{1}{2}H_{2} + Na^{+} + e^{-} \Leftrightarrow NaH \quad E_{ca}^{0} = -2.37V \qquad \qquad Work = Q \cdot V$$

$$NaAlH_{4} \Leftrightarrow AlH_{3} + \frac{1}{2}H_{2} + Na^{+} + e^{-} \quad E_{an}^{0} = -1.73V \qquad \qquad nF = 289,000 \frac{C}{\text{mol AlH}_{3}}$$

$$\frac{1}{MaAlH_{4} \Leftrightarrow AlH_{3} + NaH \quad \Delta G_{cell}^{0} = 61.2kJ \quad E_{cell}^{0} = -0.64V \qquad \qquad E_{cell} = E_{cell}^{o} + \eta$$

$$Ideal : \quad W_{Ideal} = (nF)E_{cell}^{o} = 61.2 \frac{kJ}{\text{mol AlH}_{3}}$$

$$Ideal Cost = \frac{61.2 \text{ kJ}}{\text{mol AlH}_{3}} \frac{33.3 \text{ mol AlH}_{3}}{\text{kg AlH}_{3}} \frac{10 \text{ kg AlH}_{3}}{\text{kg H}_{2}} \frac{1 \text{ kWh}}{3,600 \text{ kJ}} = 5.66 \frac{\text{kWh}}{\text{kg H}_{2}} \Rightarrow @ \frac{\$0.05}{\text{kWh}} = \frac{\$0.28}{\text{kg H}_{2}}$$

$$\frac{\eta = 0.3 \text{ V}: \quad W_{Real} = (nF)E_{cell} = 90.7 \frac{\text{kJ}}{\text{mol AlH}_{3}}}{\text{kg AlH}_{3}} \frac{10 \text{ kg AlH}_{3}}{\text{kg H}_{2}} \frac{1 \text{ kWh}}{3,600 \text{ kJ}} = 8.40 \frac{\text{kWh}}{\text{kg H}_{2}} \Rightarrow @ \frac{\$0.05}{\text{kWh}} = \frac{\$0.42}{\text{kg H}_{2}}$$

$$Alane Formation Efficiency = \frac{W_{Ideal}}{W_{Real}} = \frac{61.2}{90.7} = 67\%$$

@ $0.05 / kWh = 0.42 / kg H_2$

Results

Hydrogen desorption (TGA), showing almost 9% by weight hydrogen capacity, consistent with alane capacity of 10wt% Gas being H₂ was verified, using RGA

^{0.25} inch

Summary

- A novel electrochemical methods were developed to reversibly form Alane (AIH₃)
- Bulk AIH₃ formed in electrochemical regeneration
- Aluminum electrode dissolved as expected
- The needed energy was found not to exceed 30% of the cost of H_2 stored
- 0.37 mg of AIH_3 were formed in 10 minutes
- At this reaction rate and using the bench size cell,
 ~ 450 hours of reaction time would be needed to form 1 g of alane

Electrochemical Cell Glassware

Comparison of H₂ Storage Methods

Storage Method	ΔG^o_{cell} (kJ)	E ^o _{cell} (V)	Storage Density (kg H ₂ /m ³)	Storage Energy Cost (kWh _e /kg H ₂)	Storage Cost @ \$0.05/kWh (\$/kg H ₂)
$NaAlH_4 \approx AlH_3 + NaH$	61.2	-0.64	150	<i>Ideal:</i> 5.66	0.28
				$\eta = 0.3 \ V$: 8.40	0.42
$Al^{3+}/3Cl^{-}$ solution	46.5	-0.16	150	<i>Ideal:</i> 4.28	0.21
$Al + \frac{3}{2}H_2 \leftrightarrow AlH_3$				$\eta = 0.3 V$: 12.33	0.62
Wet Synthesis			150	Ideal: 107	5.3
H ₂ Liquefaction			70	12.5 - 15	0.63 - 0.75
H ₂ Compression (7000 psig)			79.8	2.6 - 3.6	0.13 - 0.18

FY08

- Upgrade the Electrochemical Cell with larger surface area working (AI) and counter electrodes and focus effort on using alanate solutions
- Examine the use of catalysts (Ti) in accelerating the electrochemical regeneration
- Use other techniques (e.g. NMR and Raman) to quantify and characterize ${\rm AIH}_{\rm 3}$
- Work closely with other AlH₃ partners BNL and Hawaii

FY09

- Optimize all parameters needed for producing several grams of AIH₃ efficiently
- Design and construct a lager Electrochemical Cell (EC) capable of producing larger quantities of AIH₃
- Develop efficient methods of extracting AIH₃ from (EC)
- Work closely with other AIH_3 partners BNL and Hawaii