Engineering Tasks for the MHCOE

We Put Science To Work

J. Gray, M.P. Jones, P. Berseth, B.J. Hardy & D.L. Anton Savannah River National Laboratory

Project ID #: STP 20

This presentation does not contain proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Oct. 1 2006
- End Sept. 30, 2009
- % complete 10%

Budget

- Funding Received in FY08
 - \$180K
- Funding for FY07
 - \$300k
- Funding Reduced Due to Overlap with Future Hydrogen Storage Engineering Center of Excellence

Barriers Addressed

- System Gravimetric Capacity
- System Volumetric Capacity
- System Discharge Rate
- System Charging Time

Partners

- NASA-Jet Propulsion Laboratory
- University of Nevada-Reno
- Sandia National Laboratory
- University of Utah

- Determine Heat Management Requirements for Refueling Station Based on Metal Hydrides
- Determine Sorption Kinetics for LiMgN Sufficient for Initial Design of Storage System Utilizing this Material

Milestones

- System Analysis (9/'07 end)
 - Develop heat and mass transfer models to assess MHCoE storage materials' performance in a hydrogen storage system (reported at '07 annual review) and determine thermal management requirement during refueling for at least three different heats of reaction.
- LiMgN Kinetics (1/'08 start)
 - Determine the hydrogen sorption kinetics and mechanisms of LiMgN over the temperature and pressure range of interest to DOE for automotive hydrogen storage applications.

- Developed System Model Using ASPEN+[®] Software
- Determine Fueling Station Parameters
- Modeled Required Heat Transfer
 - Modeled Required Heat Removal From On-Board Storage System
 - Modeled Heat Transfer to Bulk Storage Tank
 - Based heat generation rates on metal hydrides with range of overall heats of reaction
 - Charged at rates given in DOE Technical Targets
 - Varied number of vehicles refueling simultaneously

•Two Stages of Hydrogen Transfer Occur at the Refueling Station •Only Vehicle Refueling Modeled Here

Fuel Storage Requirements

Station Design

Pump

Fueling points

- 2 fueling points per pump
- 8 pumps per station
- 4 kg H₂ dispensed per vehicle
- 3 minutes refueling per vehicle
- 5 minutes per car for payment, connecting and disconnecting hoses and grounds
- 7.5 vehicles fueled/hour/fueling point (maximum)
- 1 kg H₂ = 1 gal gasoline (energy equivalent)

480 kg H_2 peak hourly fuel demand 6,850 kg H_2 daily fuel demand 20,000 kg H_2 for 3-day on-hand fuel supply

Standard Gasoline Bulk Storage Tank

* From <u>Hydrogen Delivery Infrastructure Option Analysis</u> delivered at *DOE* and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC

20,000 kg of Hydrogen Would Occupy:

689 bar (10,000 psi)	540,000 L	140,000 gal	17.5 Std Tanks
Liquid	280,000 L	73,333 gal	9.2 Std Tanks
Metal Hydride**	200,000 L	50,000 gal	~6.3 Std Tanks

**Averaged over all metal hydrides in Figure 4 of Hydrogen Storage Materials Workshop Proceedings 2002

Modeling Assumptions

- Steady State Process
 - Reasonable for high flows of heat transfer fluid
 - Rapid transfer of energy
 - Neglects change in bed temperatures at onset of refueling
 - Both for vehicle and bulk tank
 - Immediate response of coolant system
 - Energy balance
 - Uniform temperature in storage media is maintained
 - Instantaneous transfer of energy
- Ambient Temperature of 25°C

- Hydride used as Fuel Supply Source
 - Identical hydride for bulk storage and vehicle storage
- No Recovery of Heat Accounted for
 - All heat dissipated through cooling tower
 - Cooling tower sized for hourly peak fueling
 - Cooling tower is sized such that bulk refueling heat dissipation can occur during off hours

Mass and Energy Balances

Basic steady-state energy balance, mass balance, and mass diffusion relations used for cooling tower design

 $\frac{dT_w}{dV} = \frac{\frac{dh_a}{dV} - C_{p,w} \left(T_w - T_{ref}\right) \frac{dw_a}{dV}}{\left[\frac{\dot{m}_{w,i}}{\dot{m}_a} - \left(w_{a,o} - w_a\right)\right] C_{p,w}}$ $\frac{dw_a}{dV} = -\frac{Ntu}{V_T} \left(w_a - w_{s,w}\right)$ $\frac{dh_a}{dV} = -\frac{Le \cdot Ntu}{V_T} \left[\left(h_a - h_{s,w}\right) + \left(w_a - w_{s,w}\right) \left(1/Le - 1\right) h_{g,w}\right]$

where:

 T_w is the water temperature

 T_{ref} is the reference temperature, typically 25°C m_a is the mass flow rate of air through the cooling tower $m_{w,i}$ is the mass flow rate of water through the tower h_a is the enthalpy of the moist air per pound of dry air $h_{s,w}$ is the enthalpy of saturated air at the water volume $h_{a,w}$ is the enthalpy of saturated water vapor

dV is a differential volume

 V_{τ} is the total volume

 w_a is the humidity ratio at the water temperature

 $w_{a,o}$ is the humidity ratio at exit water conditions

 w_{sw} is the humidity ratio of saturated air

 $C_{p,w}$ is specific heat of water

Ntu is the number of transfer units for the cooling tower *Le* is the Lewis number

Maximum Hourly Heat From Fueling Vehicle

Cooling Tower Water Rates Calculation

Cooling	= 100 tons	Cooling	= 1,000 tons		
Cycles	= 4	Cycles	= 4		
Reci	rculation – typically 0.03 gpn	n per ton of cooli	ng required		
Recirculation = 3 gpm * 100 tons = 300 gpm		Recirculation	Recirculation = 3 gpm * 1,000 tons = 3,000 gpm		
	Evaporation – typically 1%	of recirculation r	ate		
Evaporation	= 0.01 * 300gpm = 3 gpm 4,320 gpd	Evaporation	= 0.01 * 3,000gpm = 30 gpm 43,200 gpd		
Blowdown = 3	8 gpm / (4 – 1) = 1 gpm 1,440 gpd	Blowdown = 3	30 gpm / (4 – 1) = 10 gpm 14,400 gpd		
Make-up	= 4,320 gpd + 1,440 gpd = 5,760 gpd	Make-up	= 43,200 gpd + 14,400 gpd = 57,600 gpd		
SRNL	Make-up cooling water requare substantial	uirements for con	tinuing operation		

COOLING TOWER MAINTENANCE CHECKLIST

Description		Maintenance Frequency				
		Weekly	Monthly	Annually		
Cooling tower use and sequencing	X					
Overall visual inspection	X					
Inspect for clogging						
Test water samples						
Clean suction screen		Х				
Fan motor condition		X				
Operate make-up water float switch		Х				
Vibration		X				
Check tower structure		Х				
Check belts and pulleys	X					
Check lubrication			X			
Check motor supports and fan blades			Х			
Motor alignment			X			
Check drift eliminators, louvers, and fill			Х			
Clean tower				Х		
Check bearings				Х		
Motor condition				Х		

Maintenance costs need to be considered as part of overall fueling costs

SRNL

Cost and Water Usage

Conclusions

- Large quantities (8-10 GJ/hr) of heat are generated during hydrogen refueling.
- Cooling towers (100-1000 tons) will occupy a large footprint and have significant operating costs.
- Bulk fuel storage tanks will need to be approximately 4 times as large as those in existing gasoline filling stations to match capacity if hydrides are used for storage.
- Significant water and waste water resources are needed for cooling tower operation.

- Investigate alternative cooling methods.
- Investigate different hydrides for the bulk and vehicle storage medias.
- Identify different fueling station designs.
- Identify uses of low grade waste heat.

Overview: LiMgN Kinetics

- Theoretical H₂ storage capacity is also 8.2 wt% by Lu et. al.* within the MHCoE
 - 8.0 wt% observed experimentally

$LiMgN + H_2 \leftrightarrow \frac{1}{2} Mg(NH_2)_2 + \frac{1}{2} MgH_2 + LiH$

- Rapid discharge observed at 160-220°C
- Rehydrogenation observed under moderate temperature and pressure – 160°C and 140 bar
- Dehydrogenation proceeds through an intermediate step

Accelerated reversibility has been observed using 4 wt.% TiCl₃ dopant.*

- Verify reversibility conditions of 4wt% TiCl₃ doped LiMgN
- Outline dehydrogenation and hydrogenation kinetics under various temperature and pressure conditions anticipated for hydrogen storage system design
- Explore Li:Mg ratio and transition metal content on both hydrogenation and dehydrogenation kinetics.

- Perform isothermal kinetic studies under well-defined, controlled reaction conditions utilizing Seivert's apparatus
- Experimental conditions to be explored:
 - Broad Range Kinetics Characterization
 Composition: 1LiH:1Mg(NH)₂+4wt% TiCl₃
 Charge: 100 180°C/70 & 140bar
 - Discharge: 100 260°C/1bar

Kinetics Optimization

- Charge: 100°C/140bar
- Discharge: 100°C/1bar
 - LiH:Mg(NH)₂= 2 & 3
 - TiCl₃ = 0.5, 1, 2wt%
- XRD analysis at various points in hydrogenation/dehydrogenation cycle
- <u>Deliverable</u>:
 - Experimental data required to determine storage system heat load and performance characteristics.
 - Optimized composition for kinetics and capacity.

LiNH₂:MgH₂ Preparation:

 Fritsch milled 1LiNH₂:1MgH₂ + 4 wt% TiCl₃ for 2 hr. at 500 rpm under Ar Rotation changed every 30 min.

Identified primarily LiNH₂and MgH₂ present, with unreacted TiCl₃ and residual contamination oxides.

Isothermal Discharge Kinetics

- 1MgH₂:1LiNH₂ + 4wt% TiCl₃
- Dehydrided from as-milled condition
- Nominal reservoir pressure is 1 bar to

(maximum 0.1 bar pressure rise)

Isothermal Charging Kinetics

- 1MgH₂:1LiNH₂ 4 wt% TiCl₃
- Charged after discharged at 220°C/3 hrs
- Nominal charging pressure 140 bar *(maximum 0.5 bar pressure drop)*

Cyclic Behavior of LiMgN

- Material charges consistently through 3 cycles with some degradation after second cycle.
- Discharge capacity loss of 60% due to lack of full recharging.

Future Plans

Future Plans

- –XRD analysis of products as a function of charge state currently being conducted
- Perform subsequent discharge tests after recharge to obtain consistent starting state
- –Continuously monitor discharge gas with RGA to observe possible $\rm NH_3$ loss as a function of temperature
- -Expand discharging temperatures for optimum recharging kinetics
- -Test range of LiH:Mg(NH)₂ compositions
- Test various catalyst concentrations to minimize catalyst mass and cost.

Publications

 Mark P. Jones. "Solid State Hydride System Engineering - Integrated Component and System Model." Washington Savannah River Company Document, WSRC-TR-2007-00391, Rev. 1, 2007.

