



## **HYDROGEN TO THE HIGHWAYS**

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

DAIMLER







Ronald Grasman June 10, 2008

Project #: TV1

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Program Overview**

**US Dept. of Energy Fuel Cell Vehicle and Infrastructure Cooperative Program** 

### **Timeline**

Project Start Date: 01/07/04

Project End Date: 09/30/09

Percent Complete: 85%

#### **Partners**

Chrysler

BP America

Daimler

DTE Energy

MBUSA

NextEnergy

### **Budget**

-\$88.8M Total Project Funding

- \$44.4M Federal Share

- \$44.4M Industry Share

-\$5.1M FY05 Funding

-\$6.3M FY06 Funding

-\$7.6M FY07 Funding

#### **Barriers**

A. Vehicles

B. Storage

C. Hydrogen Refueling Infrastructure

D. Maintenance and Training Facilities

E. Codes and Standards













# **Objectives**

- The main focus of the on-going DOE Fleet Validation and Demonstration Project is to collect data and evaluate the technology status of:
  - Fuel cell powered vehicles (OEM's)
  - Hydrogen infrastructure (energy companies and suppliers)

| Performance Measure                                     | Units                                     | 2009 Performance<br>Target | 2015 Performance<br>Target |
|---------------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|
| Fuel Cell Stack Durability                              | Hours                                     | 2000                       | 5000                       |
| Range                                                   | Miles                                     | 250                        | 300                        |
| Hydrogen Cost at Station;<br>On- or Off-site Production | \$/GGE<br>(Gasoline Gallon<br>Equivalent) | \$3.00                     | \$2.00-\$3.00              |













# **Milestones**

| Month/Year                   | Milestone or Go/No-Go Decision                                                                                                                     |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FUELING STATION MILESTONES   |                                                                                                                                                    |  |
| Feb-2007                     | Fully-operational hydrogen station utilizing 35MPa fuel delivery system at the NextEnergy site in Detroit, Michigan                                |  |
| Nov-2008                     | Fully-operational hydrogen station with a reformer as well as a 35MPa and 70MPa fuel delivery system in Burbank, California                        |  |
| FUEL CELL VEHICLE MILESTONES |                                                                                                                                                    |  |
| Sep-2009                     | Customer operations of Gen-I vehicles (A-Class and Sprinter vans) in three different eco-systems (i.e. climate, terrain)                           |  |
| Dec-2008                     | Accelerated durability testing to simulate 2000-hour life cycle of the Gen-II fuel cell stack system                                               |  |
| Dec-2009                     | Internal operations of three Gen-II vehicles in at least three different geographic areas to accumulate approximately 40,000 kilometers in mileage |  |
| Pending                      | Considering project extension through September 2010 to extend external operations of Gen-II fuel cell vehicles                                    |  |













# **Approach**

- Operate thirty Gen-I vehicles under real world condition to monitor performance targets
  - Durability of fuel stack and system
  - Range of operation with compressed H<sub>2</sub>
  - Cost of H<sub>2</sub> from various production methods
  - Performance degradation over life via dynamometer and on-road testing
- Maintain data acquisition system that telematically collect vehicle data
  - Submit collected data to NREL for monitoring progress
  - Match vehicles with DOE technology validation milestones
- Develop demonstration projects (e.g. Burbank, CA)
  - Validate hydrogen fueling technology
  - Provide hydrogen to the Chrysler Team fuel cell vehicles
- Provide data from Gen-II vehicles under same operations conditions as Gen-I vehicles
  - Compare technology maturity over program duration
- Align the Chrysler Team activities with the education goals of the DOE
  - Raise public awareness of hydrogen technology
  - Implement safety process (hydrogen station HAZOP/HAZID's)
  - Develop Incident Management Plans













# Accomplishments and Progress Gen-I Customer Operations

- Continued to accumulate miles by external customers who provide a full range of driving patterns in a variety of terrain, traffic and climatic conditions
- Finalized all performance vehicle testing including dynamometer, acceleration, gradeability and 'power at' 40°C
- Doubled accumulated mileage from 2006 to 2007 as customers gained driving and fueling experience
- Encountered no major safety issues
- Submitted over 69 DVD's of raw data to NREL

















Gen-I Customer Operations (cont'd)



- Successfully completed the 2-year commitment of Gen-I operations with thirty fuel cells vehicles
- Operation of Gen-I vehicles will operate until the end of the DOE Project
  - Approximately twenty fuel cell customer contracts will be extended for further Gen-I operations within DOE projects
  - One will be operated at NREL facility for approximately six months
  - Remaining vehicles will be operated outside the DOE project
  - The Chrysler Team will continue to provide NREL data to all A-Class fuel cell vehicles until end-of-project













# **Accomplishments and Progress**Gen-I Technical Accomplishments

- Upgraded the fuel tank system from 35MPa to 70MPa to improve vehicle range by 60%
- Optimized software algorithm to improve fuel economy by 10%















# **Accomplishments and Progress**Gen-II Technical Accomplishments





- Internally operated Gen-II vehicles in cold weather conditions
- Completed first phase of durability testing on Gen-II fuel cell stack system
- Modified FDA infrastructure to collect and process data from Gen-II vehicles

| Specifications    | B-Class Fuel Cell                  |  |
|-------------------|------------------------------------|--|
| Vehicle Type      | Mercedes Benz B-Class (T245)       |  |
| Body Style        | 4-Door Sport Tourer                |  |
| Seating           | 4-Seats                            |  |
| Engine            | Electric Motor                     |  |
| Net Power         | 136hp                              |  |
| Net Torque        | 215 lb-ft                          |  |
| Transmission      | Single Speed                       |  |
| Fuel Cell System  | PEM 108hp                          |  |
| Stability Control | Electronic Stability Program (ESP) |  |
| Fuel              | Compressed Hydrogen (70MPa)        |  |













## Codes and Standards

### Significant progress was made with regards to Codes and Standards

- Published Hydrogen Safety Best Practices Manual
- Hydrogen Fuel Quality
  - Published SAE TIR J2719-V2, Hydrogen Quality Guideline for Fuel Cell Vehicles
  - Aligned California SB-76 hydrogen quality requirement with SAE
- CSA America
  - HGV 4.X standards for hydrogen fueling devices and hardware in draft form
  - HPRD1 (standard for hydrogen pressure relief devices) draft completed, Public comment completed, work group responding to public comments
- ASTM 70MPa Fueling Device Completed testing scheduled 2<sup>nd</sup> Quarter 2008
- ICC International Fire Code now includes fueling pad requirements that eliminate the need for cable grounding of vehicles
- Michigan Hydrogen Storage and Dispensing Rules Successfully completed public comment – expected to be promulgated by 4<sup>th</sup> quarter 2008













# Accomplishments and Progress Safety

- Updated and distributed the DOE Project Fleet Vehicle Incident Management Plan to the Incident Management Team leaders and commanders in the first quarter of 2007
- Conducted a joint table top exercise using the updated DOE incident management plan that included personnel from the Michigan and California sites second quarter 2007
- Conducted emergency responder training at NextEnergy which was attended by Wayne State Security, Detroit Police and Detroit Fire Fighter personnel during the second quarter of 2007
- Risk assessment and HAZOP activities for the 700 bar Burbank,
   California station began the third quarter of 2007 and are on-going
- Successfully inspected hydrogen vehicle storage tanks as required by TUV
- Commissioned the NextEnergy facility during the first quarter of 2007













## **Outreach and Media Events**



Customer Outreach: Events w/ Customer: 4 Events by Customer: 60



**Shows & Conferences: 5 Public Outreach Events: 22** 







**Media Outreach Events: 10** 















# Accomplishments and Progress Outreach

- The DOE continues to play a more prominent role in outreach efforts:
  - DOE flyers distributed at outreach events
  - Display banner produced describing the DOE project and F-Cell customers
  - Joint flyer created describing the DOE project and Daimler and Chrysler's role in it



















# Accomplishments and Progress Infrastructure



#### Northern California – PG&E Mobile

- Technical Data: hydrogen produced by remote SMR, storage capacity of 150 kg, 10-15 kg/day
- Accomplishments: installed and commissioned at ideal downtown location within 2 months after PG&E reached agreement with the Chrysler Team, all legal agreements were finalized on time (PG&E, BAAQMD, APCI)

### Southern California – LAX (non-DOE)

- Technical Data: hydrogen produced by on-site electrolysis, capacity of about 25 kg/day
- Accomplishments: in operations since early 2006, serving a number of Daimler/Chrysler vehicles on a regular basis, and other OEM's (Ford, Toyota, Honda, etc.) vehicles

















# Accomplishments and Progress Infrastructure



#### · Michigan - DTE

- Technical Data: hydrogen produced by electrolysis, storage capacity of 140 kg, capable of dispensing 15 kg/day
- Accomplishments: operational since 2004, only one of a handful of stations in cold weather areas

#### Michigan – Next Energy

- Technical Data: hydrogen produced by remote SMR, usable capacity of 50 kg, 10-15 kg/day
- Accomplishments: safety processes coordinated with NEC, successful community outreach, inclusion of DCC in all safety assessment processes



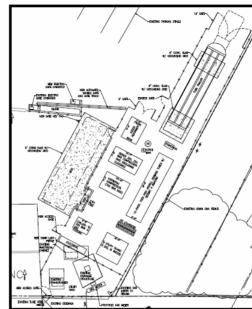















## Infrastructure

#### · Southern California - Burbank

- Technical Data: on-site SMR hydrogen production;
   240 kg, and up to 108 kg/day storage capacity
- Hydrogen Delivery: 350 and 700 bar
- Site utilization: planned as an open site for all OEMs, the purchase of a fuel cell bus Burbank will use 8 – 10kg/day of hydrogen
- Status: Under development
  - Completed site selection
  - Ordered long lead-time equipment
  - Completed property survey and station layout approved
  - Began HAZOP, HAZID, and project safety reviews
  - Began CEQA and NEPA processes
  - Addressing local permitting requirements
  - Completed legal agreement with City of Burbank
  - Projected stated up date: November 1st

















# Future Work Plans for 2009

#### Fuel Cell Vehicles Gen I and Gen II

- Maintain smooth operation of the fuel cell vehicles with on-going service, maintenance and customer support
- Further operation of Gen I F-Cell customer fleet and accumulation of mileage until end of program
- Lifetime test of Gen II fuel cell system on test bench to simulate real life conditions
- Internal operation of Gen-II vehicle under different climatic conditions

## Hydrogen Infrastructure

- Continue operation of the NextEnergy, LAX and the PG&E mobile unit end of contract
- Complete site development of the City of Burbank station with projected completion 4<sup>th</sup> quarter 2008

## Safety and Data Reporting

- Maintain project safety through continued inter-team communication, vehicle and infrastructure training, employee and customer education, "tabletop" crisis management drills
- Participate in safety and risk assessment activities with the construction of new 70 MPa Burbank station
- Maintain the high quality of technical vehicle and infrastructure data reporting to NREL/DOE

#### Outreach / Media Events

 Pursue novel approaches toward outreach and media events to raise public knowledge of hydrogen technology and demonstration projects













## **Conclusion**

- Continued to accumulate miles over a full range of driving patterns and in a variety of terrain, traffic and climatic conditions with F-Cells (A-Class and Sprinter vans) that were operated and fueled by external customers
- Finalized all performance vehicle testing including dynamometer, acceleration, gradeability and 'power at' hot temperatures
- Optimized Gen-I vehicles with new software algorithm and verified 10% improvement in fuel economy
- Increased driving range by 60% by upgrading the fuel tank system to 70MPa
- Successfully drove in cold weather conditions with Gen-II vehicles
- Planning to commission City of Burbank hydrogen fueling station in November 2008
- Conducted over 100 media and outreach events to raise public knowledge of hydrogen technology and demonstration project.
- Standards being developed by SAE, CSA and ASTM were significantly advanced
- Amended ICC, International Fire Code to include fueling pad resistance requirement
- Published hydrogen best practices manual











