Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

TEAM: Chevron Technology Ventures, Hyundai-Kia Motor Company & UTC Power

Puneet Verma – Program Manager Dan Casey – Technical Director **Chevron Hydrogen** June 2008

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Start: January 15, 2004
- End: September 30, 2009
- 65% complete

Budget

Total Project Funding	\$94.5 mil		
DOE share	\$38.1 mil		
Contractor share	\$56.4 mil		
Prior Funding	\$22.6 mil		
Funding FY08	\$ 5.8 mil		

Barriers

- Fuel Cell Vehicles
- H2 Refueling Infrastructure
- Hydrogen and Electricity Co-Production

Team Members

- Hyundai-Kia Motor Companies
- UTC Power
- Hyundai Kia America Technical Center
- Alameda Contra Costa Transit
- Southern California Edison
- Tank Automotive Research, Development and Engineering Center (DOD)
- Gas Technology Institute

Objectives

 Demonstrate complete systems of integrated hydrogen fuel cell technologies for transportation and hydrogen infrastructure under real-world operating conditions

Validate DOE 2009 Performance Targets

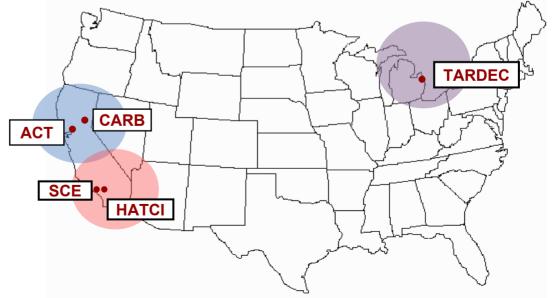
- 250 mile Vehicle Range
- 2000 hr Fuel Cell Durability
- \$3.00/gge production cost
- Safe and convenient refueling by drivers

Approach

- Public-Private Partnership
- Controlled fleet
- Limited access
- Third-party fuelings available
- Open during business hours
- Quiet and odorless

Demonstrate practical hydrogen technologies in real-world settings

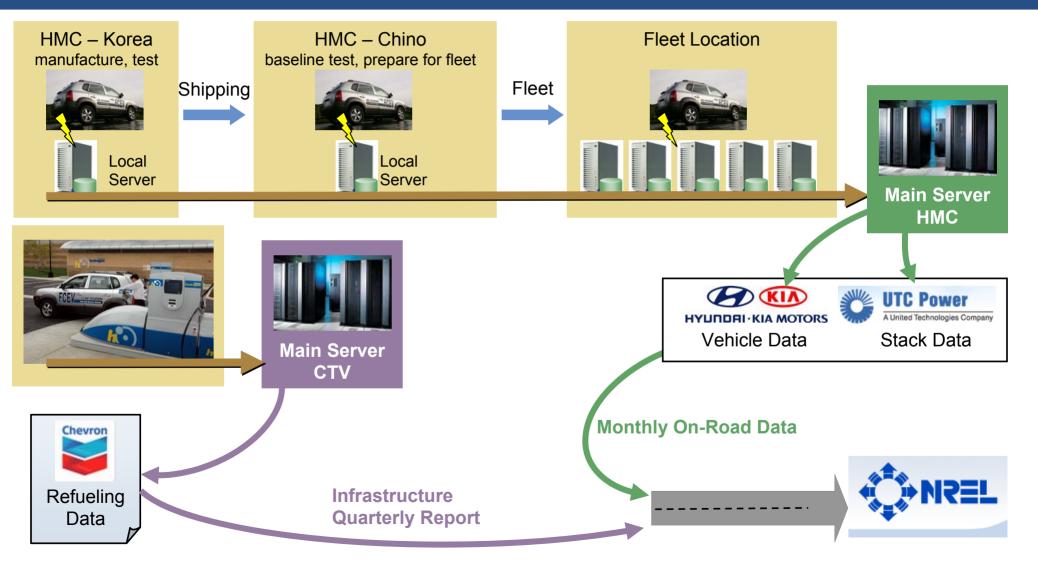
Progress – Infrastructure Locations

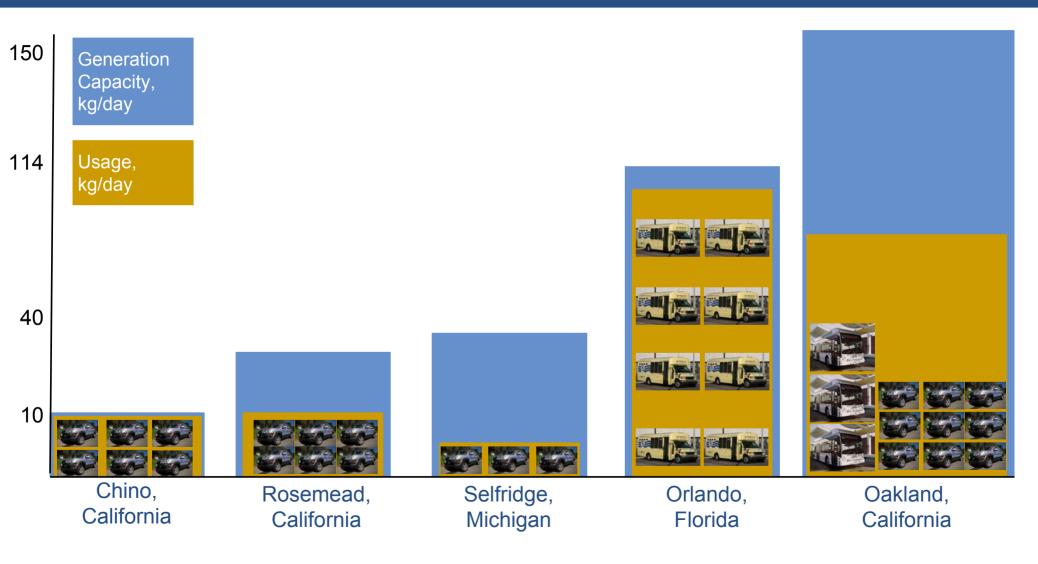


Progress - Vehicle Deployment

Operation Area	Service Facility	Site Host Location	Operator	Total	2005	2006	2007	2008
Southern	Chino	Chino	HATCI	6	3	2	0	1
California		Rosemead	SC Edison	9	0	0	3	6
Northern	Sacramento	Sacramento	CARB	2	0	0	1	1
California	Saciamento	Oakland	AC Transit	10	1	6	1	2
Michigan	Ann Arbor	Selfridge	TARDEC	5	0	0	2	3
3 Regio	nal Areas		5 Organizations	32	4	8	7	13

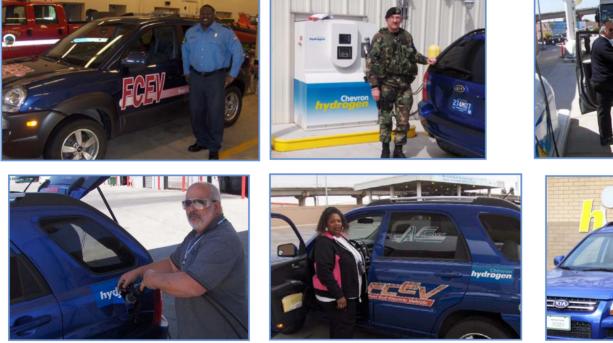
- Twenty-five vehicles deployed by end of March 2008
- Seven more vehicles deployed in 2008





Progress – Upgraded Data Transfer System

Progress – Infrastructure On-site Generation / Usage



Progress – Diverse Driving Patterns

Hydrogen Energy

- Security Patrol
- Fire Chief
- Mail Delivery
- Road
 Supervisors
- Commuting
- Driver Fueling



Technical Accomplishments

Cold Area Fleet Operation -> Cold Start-up Test

- Fleet region: Michigan (TARDEC, HATCI Ann Arbor)
- Cold weather sub zero soaking time more than 48hrs

Fleet Vehicle Operation in Michigan

Technical Accomplishments

2nd Generation Vehicle Function

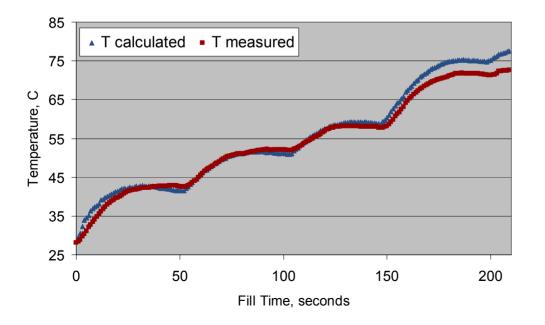
• 700bar H2 tank: Increased vehicle range more than 33%

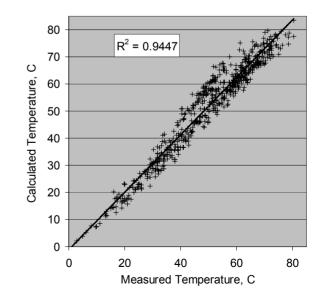
• Super-capacitor: Increased vehicle performance

- Improved Vehicle Software logic and controller
- Improved BOP component
- New stack with 2nd generation function (from 2007 model year)

Technical Accomplishments

Introduction to New Fuel Economy Test Equipment


- Purpose: Dynamometer fuel economy test
- New method: H2 weight measurement equipment: Based on SAE J2572
- Test and review completed
- Equipment testing at Chino Lab


Accomplishment - Fueling Temperature Increase Calculation

- Equation developed to calculate on board storage tank temperature based on signals at the dispenser
- No communications cable required
- Calculated temperature compares well with measured temperatures

Equation compared for fuelings

- 382 fills of 152 liter vehicles
- 117 fills of 1228 liter vehicles
- 132 fills of 2100 liter vehicles
- 0.945 Correlation coefficient

Progress – GTI POGT

Partial Oxidation Gas Turbine (POGT) & Reactor

Co-Production of Hydrogen and Electricity

Partial Oxidation Gas Turbine (POGT) and Partial Oxidation Reactor (POR) integration complete

Achieved nine (9) successful start/stops of POGT with Stable Run Durations of 7 to 95 minutes

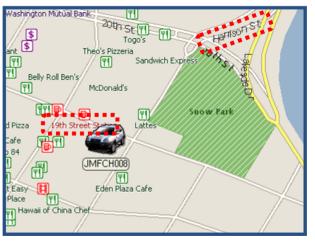
Process variables of interest were controlled, data collected, and being analyzed

Interconnection of WGS, compressor, PSA and Balance of Plant underway

Slipstream Water-Gas-Shift Reactor

Lessons Learned

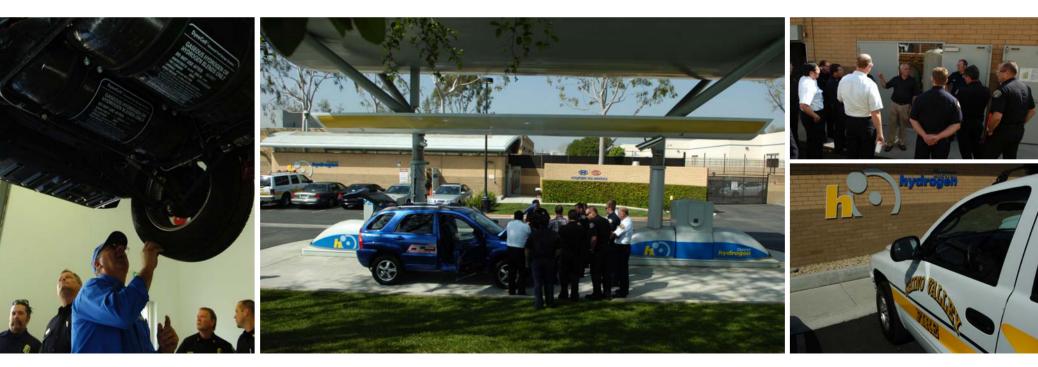
Vehicle Accident & Safety


- All Safety Devices worked as designed (ESD function)
- Case Study → First FCV accident
- Vehicle: ACT fleet vehicle
- Location: Oakland, CA

LH Front-side Impact

Air Bag Activated

Accident Location



Results - First Responder Retraining Sessions

Lessons Learned: First Responders Can Rotate Between Local Stations

- Initial training completed at end of station construction
- Additional yearly refresher training added at all stations

Lessons Learned – Station Permitting

Station Permitting Durations

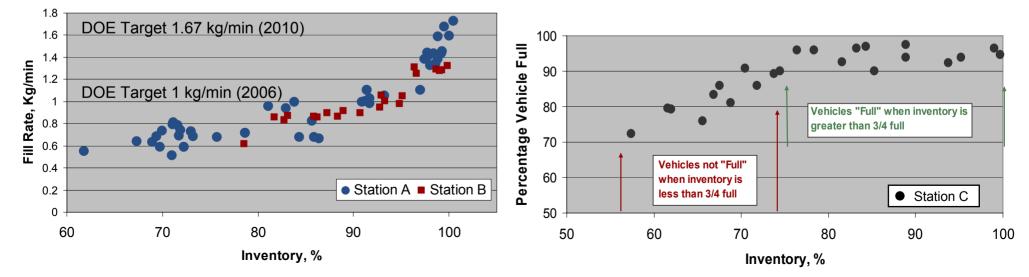
Location	Permitting Authority	Duration (months)
Chino, CA	City of Chino	6
Oakland, CA	City of Oakland	7
Rosemead, CA	Los Angeles County, California	10
Orlando, FL	City of Orlando	7
Selfridge, MI	Selfridge Air National Guard Base, Michigan	1

Permitting Differences

FACP Design

- Design of flame and gas detection system
 - Flame and gas sensors part of SIS
 - Flame sensors part of FACP, gas sensors part of SIS
 - Flame and gas sensors as separate system

Fire Suppression Systems


- Not required at Chino, Orlando, Oakland
- Required at LA County, SANGB

Results - Vehicle Percentage Full vs. Storage Inventory

- Storage Inventory % kg H2 (kg H2 when full)
- Fill Rates and Percentage Full is dependent on storage inventory – at less than 85% inventory flow rates can drop below 1 kg/min
- Differential Pressure is used to drive the gas from storage to the vehicle

- Storage density at 15C 28.4 kg/m3
- Vehicle density at 350 bar 24.1 kg/m3
- For every cubic meter of storage
 - 4.3 kg of "useable" hydrogen
 - 24.1 kg of stranded gas
- At less than 75% inventory customer does not receive "full" fill

Future Work

- Collect operating data from generators at various operating capacities in:
 - Chino, CA
 - Oakland, CA
 - Rosemead, CO
 - Selfridge, MI
 - Orlando, FL
- Field 32 vehicles in program
- Continue POGT testing and integrate balance of plant by end of 2Q

Program Summary

Relevance

- FC vehicle real world operating data
- On-site hydrogen generation demonstration

Approach

- Fleet testing of 32 FC vehicles
- Operation of six on-site hydrogen generators

Technology Transfer

Lessons learned included in merit review

Technical Accomplishments and Progress

- Range and durability reported to NREL
- Five stations reported to NREL
- Technical capability developed to meet 7% to 10% of a conventional gasoline station's daily fuel dispensing requirement using on-site hydrogen production

Proposed Future Work

• Continue demonstration of vehicles and infrastructure data reporting to NREL