INTRODUCTION

The FY 2009 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR) was held on May 18-22, 2009 at the Crystal Gateway Marriott and Crystal City Marriott in Arlington, Virginia. This report is a summary of comments from AMR peer reviewers regarding the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE). Hydrogen production projects funded by the Offices of Fossil Energy and Nuclear Energy were also reviewed and included in the report. The work evaluated in this document supports DOE, and the results of this merit review and peer evaluation are major inputs utilized by the DOE in making funding decisions for following fiscal years.

The objectives of this meeting were as follows:

- Review and evaluate FY 2009 accomplishments and FY 2010 plans for DOE laboratory programs, industry/university cooperative agreements, and related research and development (R&D) efforts.
- Provide an opportunity for program stakeholders/participants (e.g., fuel cell manufacturers, component developers, etc.) to shape the DOE-sponsored R&D program in such a way that the highest priority technical barriers are addressed and technology transfer is facilitated.
- Foster interactions among the national laboratories, industry, and universities conducting R&D.

The peer review process followed the guidelines of the Peer Review Guide developed by the Office of Energy Efficiency and Renewable Energy (EERE). The peer review panel members, listed in Table 1, provided comments on the projects presented. These panel members are experts from a variety of related backgrounds related to hydrogen and fuel cells R&D, and they represent national laboratories, universities, various U.S. Government agencies, and manufacturers of hydrogen production, storage, delivery, and fuel cell technologies. Each reviewer was screened for conflicts of interest (COI) as prescribed by the Peer Review Guide. A complete list of the meeting participants is presented as Appendix A.

No.	Last Name, First Name	Organization			
1	Aardahl, Christopher	Pacific Northwest National Laboratory			
2	Abdel-Baset, Tarek	Chrysler, LLC			
3	Aceves, Salvador	Lawrence Livermore National Laboratory			
4	Adjemian, Kev	Nissan Technical Center North America, Inc.			
5	Adzic, Radoslav	Brookhaven National Laboratory			
6	Ahluwalia, Rajesh	Argonne National Laboratory			
7	Ahmed, Shabbir	Argonne National Laboratory			
8	Ahn, Channing	California Institute of Technology			
9	Akiba, Etsuo	Energy Technology Research Institute			
10	Anderson, Arlene	U.S. Department of Energy, EERE			
11	Anderson, Michele	ONR Naval Materials Division			
12	Anderson, Robert	U.S. Environmental Protection Agency			
13	Anton, Donald	Savannah River National Laboratory			
14	Atanasoski, Radoslav	3M Center			

Table 1: Peer Review Panel Members

15	Bailey, Carol				
16	Balachandran, U. (Balu)	RDS, LLC			
17	Balema, Viktor	Argonne National Laboratory			
17	Bardasz, Ewa	Sigma-Aldrich Lubrizol			
19	Baturina, Olga	Naval Research Laboratory			
20	Bavarian, Farshad	Chevron			
21	Benard, Pierre	Institut de recherche sur l'hydrogène			
22	Bender, Guido	Hawaii Natural Energy Institute/ University of Hawaii			
23	Bendersky, Leonid	National Institute of Standards and Technology			
24	Benjamin, Thomas	Argonne National Laboratory			
25	Blair, Larry	U.S. Department of Energy			
26	Borup, Rod	Los Alamos National Laboratory			
27	Bose, Arun	U.S. Department of Energy			
28	Bourgeois, Richard	General Electric Global Research Center			
29	Bowman, Robert	Oak Ridge National Laboratory			
30	Buxbaum, Robert	REB Research & Consulting			
31	Cai, Mei	GM Research & Development Center			
32	Cairns, Julie	CSA America			
33	Carter, J.	Argonne National Laboratory			
34	Carter, Robert	GM Fuel Cell Activities			
35	Casey, Dan	Chevron			
36	Choudhury, Biswajit	DuPont Fuel Cells			
37	Cooper, Alan	Air Products and Chemicals, Inc.			
38	Cox, Philip	PolyFuel Inc.			
39	Cross III, James	Nuvera Fuel Cells, Inc.			
40	De Jonghe, Lutgard	Lawrence Berkeley National Laboratory			
41	Debe, Mark	3M Company			
42	DeCastro, Emory	BASF Fuel Cell, Inc.			
43	Deutsch, Todd	National Renewable Energy Laboratory			
44	Dobbins, Tabbetha	Louisiana Tech University			
45	Driscoll, Daniel	U.S. Department of Energy			
45	Eddaoudi, Mohamed	University of South Florida			
40		*			
	Eisman, Glenn	Rensselaer Polytechnic Institute			
48	Erdle, Erich	EFCECO			
49	Ernst, William	Retired, Plug Power			
50	Fahr, Askar	National Institute of Standards and Technology			
51	Farese, David	Air Products			
52	Fenske, George	Argonne National Laboratory			
53	Filiou, Constantina	European Commission			
54	Fort, William	Shell Global Solutions (U.S.), Inc.			
55	Gabrielov, Alexei	Shell Technology Center Houston			
56	Ge, Qingfeng	Southern Illinois University			
57	Ghirardi, Maria	National Renewable Energy Laboratory			
58	Gittleman, Craig	Fuel Cell Research Labs			
59	Glass, Robert	Lawrence Livermore National Laboratory			
60	Goldbach, James	Arkema, Inc.			
61	Goudy, Andrew	Delaware State University			
62	Graber, Joe	U.S. Department of Energy			
63	Grassilli, Leo	D&L Energy			
64	Gross, Karl	Hydrogen Technology Associates			
65	Gupta, Nikunj	Shell Hydrogen, LLC			
66	Haberman, David	National Energy Technology Laboratory			

68	Hamrock, Steven	3M Fuel Cell Components Program			
68 69	Hardis, Jonathan	3M Fuel Cell Components Program National Institute of Standards and Technology			
70	Harrison, Kevin	National Institute of Standards and Technology National Renewable Energy Laboratory			
70	Hebling, Christopher	Fraunhofer Institute for Solar Energy Systems			
72	Herbert, Thorsten	NOW GmbH			
73	Herring, Andy	Colorado School of Mines			
74	Hershkowitz, Frank				
74	Hesterberg, Tom	ExxonMobil Research & Engineering Co.			
76	Hirano, Shinichi	Navistar, Inc.			
70	Holladay, Jamie	Ford Motor Company			
78	Hua, Thanh	U.S. Department of Energy			
78	Imam, M.	Argonne National Laboratory			
80	Jacobson, David	Naval Research Laboratory National Institute of Standards and Technology			
81	James, Brian				
82		Directed Technologies, Inc.			
83	Jensen, Craig Johnston, Christina	University of Hawaii Los Alamos National Laboratory			
84		GM R&D			
84 85	Jorgensen, Scott Kabir, Zakiul				
85	Kabir, Zakiul Kabza, Alexander	ClearEdge Power Zentrum für Sonnenenergie- und Wasserstoff-			
00	Kabza, Alexander				
87	Kogorrois lim	Forschung (ZSW) Baden-Württembergix			
88	Kegerreis, Jim Kerr, John	Exxon Mobil			
00 89	,	Lawrence Berkeley National Laboratory			
90	King, Dave Kopasz, John	PNNL			
90	Kumar, Romesh	Argonne National Laboratory			
91	,	Argonne National Laboratory			
92	Kuriyama, Nobuhiro	National Institute of Advanced Industrial Science and			
93	Lasher, Stephen	Technology Research TIAX, LLC			
94	Lewis, Michele	Argonne National Laboratory			
95	Lipp, Ludwig	FuelCell Energy, Inc.			
96	Maness, Pin-Ching	National Renewable Energy Laboratory			
97	Mann, Margaret	National Renewable Energy Laboratory			
98	Markovic, Nenad	Argonne National Laboratory			
99	Maroni, Victor	Argonne National Laboratory			
100	Masten, David	General Motors, Fuel Cell Activities			
100	Mazumder, Malay	University of Arkansas			
101	McFarland, Eric	University of California, Santa Barbara			
102	McQueen, Shawna	Energetics Incorporated			
103	Mehall, Mark	Ford Motor Company			
105	Meisner, Gregory	GM Research & Development Center			
106	Melis, Tasios	University of California, Berkeley			
100	Merritt, James	Department of Transportation			
108	Mettes, Jacques	Power and Energy			
100	Meyers, Jeremy	University of Texas, Austin			
110	Miller, Eric	University of Hawaii at Manoa, HNEI			
111	Miller, James	Argonne National Laboratory			
112	Miller, Michael	Southwest Research Institute			
113	Minh, Nguyen	Consultant			
114	Mitchell, George	GM Solutions, LLC			
115	Mohtadi, Rana	Toyota Motor Engineering and Manufacturing of			
110		North America			
116	More, Karren	Oak Ridge National Laboratory			
117	Moreland, Greg	Retired, Consultant (Sentech)			
118	Myers, Deborah	Argonne National Laboratory			
110					

119	Nguyen, Kevin	Chevron Energy Technology Company			
120	Nkansah, Asare	Chicago State University			
120	Olson, Greg	Retired, HRL			
121	Ozkan, Umit	Ohio State University			
122	Ozolins, Vidvuds	University of California, Los Angeles			
123	Padro, Catherine	Los Alamos National Laboratory			
124	Parks, George				
125	Paster, Mark	FuelScience, LLC			
120		Consultant, Retired DOE			
	Patel, Pinakin	Fuel Cell Energy			
128	Pecharsky, Vitalij	Iowa State University			
130	Penev, Michael	National Renewable Energy Laboratory			
131	Perret, Robert	Nevada Technical Services, LLC			
132	Peters, John	Montana State University			
133	Petrovic, John	Petrovic and Associates			
134	Pinkerton, Frederick	General Motors Research and Development Center			
135	Pintauro, Peter	Vanderbilt University			
136	Pivovar, Bryan	National Renewable Energy Laboratory			
137	Podolski, Walt	Argonne National Laboratory			
138	Quah, Cheng-Guan Michael	Concurrent Technologies			
139	Ronnebro, Ewa	Pacific Northwest National Laboratory			
140	Ramani, Vijay K.	Illinois Institute of Technology			
141	Rambach, Glenn	Third Orbite Power Systems, Inc.			
142	Remick, Robert	National Renewable Energy Lab			
143	Richards, Mark	Versa Power Systems			
144	Roan, Vernon	Retired, National Academies Member			
145	Rocheleau, Richard	University of Hawaii at Manoa			
146	Rossmeissl, Neil	U.S. Department of Energy			
147	Saber, Jim	NextEnergy			
148	Sandrock, Gary	Oak Ridge National Laboratory			
149	Shultz, Travis	U.S. Department of Energy			
150	Siegel, Don	University of Michigan			
151	Simnick, James	BP Global Fuels Technology			
152	Sink, Carl	U.S. Department of Energy			
153	Sofronis, Petros	University of Illinois, Urbana-Champaign			
154	Spendelow, Jacob	Los Alamos National Laboratory			
155	Stanfield, Eric	National Institute of Standards and Technology			
156	Stevenson, Jeff	Pacific Northwest National Laboratory			
157	Steward, Darlene	Hydrogen Technologies & Systems Center			
158	Stolten, Detlef	Forschungszentrum Jülich, GmbH			
159	Stroh, Ken	Sentech, Inc.			
160	Stubos, Thanos	NCSR Demokritos			
161	Sudik, Andrea	Ford Motor Company			
162	Summers, William	Savannah River National Laboratory			
163	Surdoval, Wayne	U. S. Department of Energy			
164	Swider Lyons, Karen	Naval Research Laboratory			
165	Tao, Greg	Materials and Systems Research, Inc.			
166	T-Raissi, Ali	University of Central Florida			
167	Tran, Thanh	NSWC Carderock			
168	Tumas, William	Los Alamos National Laboratory			
169	Turner, John	National Renewable Energy Laboratory			
170	Uddin, Nasim	Global Automotive Management Council, Inc.			
171	Vanderborgh, Nicholas	Los Alamos National Laboratory, retired			
172	Veenstra, Mike	Ford Motor Company			
112		i ora motor company			

173	Voecks, Gerald	Retired, GM			
174	Wainright, Jesse	Dept of Chemical Engineering, Case Western			
		Reserve University			
175	Waldecker, James	Ford Motor Company			
176	Walker, Gavin	University of Nottingham			
177	Wang, Yong	Pacific Northwest National Laboratory			
178	Weeks, Brian	Advanced Energy Systems			
179	Weidner, John	University of South Carolina			
180	Wheeler, Douglas	DJW Technology, LLC			
181	Williams, Mark	Retired, National Energy Technology Laboratory			
182	Wipke, Keith	National Renewable Energy Laboratory			
183	Wolverton, Christopher	Northwestern University			
184	Woodbury, Neal	Arizona State University			
185	Xu, Qing	J. Craig Venter Institute			
186	Yvon, Klaus	Université de Genève			
187	Zawodzinski, Thomas	Case Western Reserve University			
188	Zelenay, Piotr	Los Alamos National Laboratory			
189	Zhao, Yiping	University of Georgia			

SUMMARY OF PEER REVIEW PANEL'S CROSS-CUTTING COMMENTS AND RECOMMENDATIONS

AMR panel members provided comments and recommendations regarding selected DOE hydrogen and fuel cell projects, overall management of the Program, and the AMR peer evaluation process. Project comments and scores are provided in the following sections of the report. Comments on subprogram management are provided in Appendix B.

ANALYSIS METHODOLOGY

A total of **216** projects were reviewed at the meeting. As shown above, **189** panel members participated in the AMR process providing a total of **1,066** project evaluations (not every panel member reviewed every project). These reviewers were asked to provide numeric scores (on a scale of 1 to 4, with 4 being the highest) for five aspects of the research presented. Sample evaluation forms are provided in Appendix C. Scores and comments were submitted on a provided laptop to an online, private database allowing for real time tracking of the review process. A list of projects that were presented at the AMR but were not reviewed is provided in Appendix D.

Project scores were based on the following five criteria and weights:

Score 1: Relevance to overall DOE objectives (20%)

Score 2: Approach to performing the R&D (20%)

Score 3: Technical accomplishments and progress toward achieving the project and DOE goals (40%)

Score 4: Technology transfer and collaborations with industry, universities, and other laboratories (10%)

Score 5: Approach to and relevance of proposed future research (10%)

INTRODUCTION

For each project, an average score was calculated (from the scores of individual reviewers) for each of the five aforementioned criteria. These average scores were then weighted and combined to produce a final overall score for each project. In this manner, a project's final overall score can be meaningfully compared to that of another project. The following formula was used to calculate the weighted, overall score:

```
Final Score = [Score 1 x 0.20] + [Score 2 x 0.20] + [Score 3 x 0.40] + [Score 4 x 0.10] + [Score 5 x 0.10]
```

Some new projects were reviewed, for which the third criterion (Technical Accomplishments) did not apply because of the projects' recent startup. In this case, the other four criteria were scaled proportionately in the weighting calculation. The weighting value for the remaining scores [weight + (40/60 * weight)] was used to establish a final score formula for these projects. The result was the following:

```
Final Score = Score 1 \times \{0.20 + [(40/60) \times 0.20]\} + Score 2 \times \{0.20 + [(40/60) \times 0.20]\} + Score 4 \times \{0.10 + [(40/60) \times 0.10]\} + Score 5 \times \{0.10 + [(40/60) \times 0.10]\}
```

A perfect, overall score of "4" would indicate that a project satisfied the five criteria to the fullest possible extent; the lowest possible, overall score of "1" would indicate that a project did not satisfactorily meet any of the requirements of the five criteria.

Reviewers were also asked to provide qualitative comments regarding the five criteria, specific strengths and weaknesses of the project, and/or any recommendations relating to the work scope. These scores and comments were placed into a database for easy retrieval and analysis. These comments are summarized in the following sections of this report.

ORGANIZATION OF THE REPORT

The project comments and scores are grouped by Subprogram (i.e., Production and Delivery, Hydrogen Storage, Fuel Cells, Systems Analysis, and Manufacturing) in order to align with DOE Program planning scheme. Each of these sections begins with a brief description of the general type of research being performed. This is followed by the results of the analysis for each of the projects presented at the 2009 Annual Merit Review. A summary of the qualitative comments is provided for each project, as well a graph showing the overall project score and a comparison of how each project aligns with all other projects in its Subprogram area. A sample graph is provided in Figure 1.

The project comparisons illustrated in the report are criteria based. Each rectangular blue bar in the chart represents that project's average score for one of the five designated criteria. Each of these scores (each blue bar) is then compared with the related maximum, minimum, and average score for the same criterion across all projects in the same Subprogram. The black line bars that

overlay the blue rectangular bars represent the maximum, average, and minimum scores for each criterion.

Figure 1: Project Score Graph with Explanation

For clarification, consider a hypothetical review in which only three projects were presented and reviewed in a Subprogram; Table 2 displays the average scores for each of the project's five, rated criteria.

	Relevance (20%)	Approach (20%)	Technical A&P (40%)	Tech Transfer (10%)	Future Research (10%)
Project A	3.4	3.3	3.3	3.2	3.1
Project B	3.1	2.8	2.7	2.7	2.9
Project C	3.0	2.6	2.7	2.8	2.9
Project D	3.4	3.5	3.4	3.2	3.3
Project E	3.6	3.7	3.5	3.4	3.4
Max	3.6	3.7	3.5	3.4	3.4
Average	3.3	3.2	3.1	3.0	3.1
Min	3.0	2.6	2.7	2.7	2.9

Table 2: Sample Project Scores

INTRODUCTION

The Project A chart would contain five, blue rectangular bars to represent the values listed for Project A above. A black line bar indicating the related maximum, minimum, and average values for each criterion would overlay each of the blue bars to facilitate comparison with other projects in the Subprogram. In addition, each project's criterion scores would be weighted and combined to give a final, overall project score that could be meaningfully compared with those of other projects. Below is a sample calculation for the Project A weighted score.

Final Score for Project A = [3.4 x 0.20] + [3.3 x 0.20] + [3.3 x 0.40] + [3.2 x 0.10] + [3.1 x 0.10] = 3.3