Project ID	Project Title	PI Name	Organization
PD-01	Low-Cost Hydrogen Distributed Production System Development	Frank Lomax	H ₂ Gen Innovations, Inc.
PD-27	Indirectly Heated Biomass Gasification	Richard Bain	NREL
PD-33	Geologic Storage of Hydrogen	Anna Snider Lord	SNL
PDP-08	Photoelectrochemical Hydrogen Production	Malay Mazumder	University of Arkansas, Little Rock
PDP-09	Photoelectrochemical Generation of Hydrogen from Water Using Visible Light Sensitive Semiconductor Nanotube Arrays	Mano Misra	University of Nevada, Reno
PDP-11	Design of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels	Ken Johnson	PNNL
PDP-23	Innovative Hydrogen Liquefaction Cycle	Martin Shimko	Gas Equipment Engineering Corporation
ANP-02	DOE Hydrogen Program Risk Analysis in Support of EERE's Portfolio Analysis	Mike Duffy	NREL
ANP-04	A Business Case for Stationary Fuel Cells and Hydrogen Co-Production	Daryl Brown	PNNL
ANP-05	Stranded Biogas Decision Tool for Fuel Cell Co-Production	Michael Ulsh	NREL
ST-14	Hydrogen Storage Engineering Center of Excellence	Don Anton	SRNL
ST-31	Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage	Peter Pfeifer	University of Missouri, Columbus
STP-05	Hydrogen Storage Materials with Binding Intermediate between Physisorption and Chemisorption	Juergen Ekert	University of California, Santa Barbara
STP-06	SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence: Design and Testing of Metal Hydride and Adsorbent Systems	Ted Motyka	SRNL
STP-07	Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for On-Board Hydrogen Storage	Darrell Herling	PNNL

APPENDIX D: LIST OF PROJECTS NOT REVIEWED

APPENDIX D: PROJECTS NOT REVIEWED

STP-08	Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage	Dan Mosher	United Technologies
STP-09	Chemical Hydride Rate Modeling, Validation, and System Demonstration	Troy Semelsberger	LANL
STP-10	Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems	Joseph Reiter	NASA JPL
STP-11	System Design, Analysis, Modeling, and Media Engineering Properties for Hydrogen Energy Storage	Matthew Thornton	NREL
STP-12	System Design and Media Structuring for On-board Hydrogen Storage Technologies	Darsh Kumar	General Motors
STP-13	Ford/BASF Activities in Support of the Hydrogen Storage Engineering Center of Excellence	Don Siegel	Ford Motor Company
STP-14	Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage	Kevin Drost	Oregon State University
STP-15	Development of Improved Composite Pressure Vessels for Hydrogen Storage	Norman Newhouse	Lincoln Composites
STP-16	Hydrogen Storage by Novel CBN Heterocycle Materials	Shih-Yuan Liu	University of Oregon
STP-24	NaSi and NaSG Powder Hydrogen Fuel Cells	Michael Lefenfeld	SiGNa
STP-31	A Joint Theory and Experimental Project in the High-Throughput Synthesis and Testing of Porous COF and ZIF Materials for On-Board Vehicular Hydrogen Storage	David Britt	UCLA
STP-32	Capacitive Hydrogen Storage Systems: Molecular Design of Structured Dielectrics	Robert Currier	LANL
STP-33	New Carbon-Based Porous Materials with Increased Heats of Adsorption for Hydrogen Storage	Joseph Hupp	Northwestern University
STP-34	Hydrogen Trapping through Designer Hydrogen Spillover Molecules with Reversible Temperature and Pressure- Induced Switching	Angela Lueking	Penn State University
STP-35	Neutron Characterization in Support of the Hydrogen Sorption Center of Excellence	Dan Neumann	NIST
STP-47	Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage	Christopher Wolverton	Northwestern University

APPENDIX D: PROJECTS NOT REVIEWED

STP-48	Tunable Thermodynamics and Kinetics for Hydrogen Storage: Nanoparticle Synthesis Using Ordered Polymer Templates	Mark Allendorf	Sandia-Livermore
STP-49	Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials	Don Anton	SRNL
STP-50	Quantifying & Addressing the DOE Material Reactivity Requirements with Analysis & Testing of Hydrogen Storage Materials & Systems	John Khalil	UTRC
STP-51	The Reactivity Properties of Hydrogen Storage Materials in the Context of Systems	Daniel Dedrick	Sandia-Livermore
STP-52	Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage	Yury Gogotsi	University of Pennsylvania/ Drexel University
FCP-01	Fuel Cell Testing at the Argonne Fuel Cell Test Facility	Ira Bloom	ANL
FCP-05	International Stationary Fuel Cell Demonstration	John Vogel	Plug Power

(This page intentionally left blank.)