

HyDRA: Hydrogen Demand and Resource Analysis Tool

Johanna Levene

National Renewable Energy Laboratory

May 19, 2009

Project ID: AN_01_Levene

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Overview

Project start date – September 2006

Project end date – Ongoing

Percent complete – Ongoing

Budget

Total project funding – 100% DOE share

Funding for FY 2008 – \$249K Funding for FY 2009 – \$266K

Systems Analysis Barriers

Stove-piped/siloed analytical capability

Inconsistent data, assumptions, and guidelines

Suite of models and tools

NREL project with support from *A Mountain Top, LLC,* for programming expertise

Relevance – What is GIS analysis?

- GIS = Geographic Information System
- GIS is fundamentally used to answer questions and make decisions. To use GIS properly, it is important to know what you want to ask and follow a disciplined process for getting the answer. (Source: ESRI)
- The power of a GIS comes from the ability to relate different information in a spatial context and to reach a conclusion about this relationship. (Source: USGS)
- The result is not an answer, but a map.

Develop a web-based GIS tool to allow analysts, decision makers, and general users to view, download, and analyze hydrogen demand, resource, and infrastructure data spatially and dynamically.

- HyDRA is designed to display and aggregate the results of spatial analyses.
- It is a repository for spatial data inputs and spatial data results.

To access HyDRA, go to http://rpm.nrel.gov and request a login.

Approach – Comparing GIS analyses

Static maps provide great analyses, good information, but...

Wouldn't it be nice to be able to compare the data interactively? Where do hydrogen demand and resource overlap? Can I use the underlying data?

Approach – Interactive GIS analyses

Hydrogen demand and methane wastewater resource overlap in large metropolitan regions across the country.

Approach – Basic analysis: Natural gas cost

Analysis: Natural gas cost data (\$/MCF) is aggregated by county.

HyDRA provides interactive capabilities

- Can view maps for industrial, commercial, residential
- Data can be downloaded for use in other analyses

7

Approach – Hydrogen cost via commercial forecourt SMR

Analysis: Hydrogen via commercial forecourt SMR (\$/kg) is calculated using county-by-county natural gas rates in H2A

- Combines county natural gas cost with H2A standard assumptions
 - Varies only natural gas cost
 - Next step: vary other H2A parameters

Approach – Analysis of Hydrogen in Missouri

Query Results for Industrial Elec	trolysis 🗙	
Field	Value	
County	Saline	
State	Missouri	OKańsas City Colum
Res Electric Rate (\$MWh)	67.50	
Com Electric Rate (\$MWh)	66.56	Missou
Ind Electric Rate (\$MWh)	34.88	and the second
Res Forecourt Electrolysis (\$/kg)	6.60	FLL/
Com Forecourt Electrolysis (\$/kg)	6.54	opin OSpringfield
Ind Forecourt Electrolysis (\$/kg)	4.65	
	Tuisa	Rogers

In Saline county, Missouri forecourt hydrogen cost (\$/kg)

- \$5.78 Industrial SMR
- \$4.54 Commercial SMR
- \$4.65 Industrial Electrolysis

Commercial SMR is cheapest

Approach – FY09 Milestones

August 2008	September 2008	March 2009	September 2009			
Application Milestones						
Manual MSM integration	Restrict access to sensitive data in old architecture Initial release of new architecture	 Key capabilities in new architecture Thresholding Querying Print Restrict access to sensitive data 	 Graphing Buffering Plan for dynamic integration with other models 			
Data Milestones						
 45 datasets in old architecture 	 64 datasets in old architecture 19 datasets in new architecture 	 31 datasets in new architecture 	 70+ datasets in new architecture 			

Accomplishments - WTW energy and GHG emissions

Goal: Determine regional well-to-wheel (WTW) energy inputs and greenhouse gas emissions

Plan: Integrate HyDRA with the Hydrogen Macro System Model (MSM).

- Cost from H2A model
- Energy and GHG from GREET

Step 1:

Manually integrate electrolysis costs

- County by county analysis
- Allows us to validate integration with known results
- Input: county industrial electric rates from HyDRA
- Output: county forecourt electrolysis cost from H2A via MSM

Accomplishments – WTW energy and GHG emissions

Accomplishments – Rearchitecture framework

Accomplishments – Rearchitecture

Improved user experience

- Layers are cached
- Google maps layers provide familiar look and feel
- Interaction with checkboxes, buttons, and right click
- You can see Alaska and Hawaii!

More robust architecture

- Single data store for all layers
- Capable of dynamic layer creation
- Capable of dynamic integration with other models

An example of using HyDRA to do an interactive analysis:

- Where are the cheapest places I can produce hydrogen via electrolysis today?
 - Inexpensive electricity
 - Inexpensive forecourt electrolysis
- Where is there also good demand for this hydrogen?
- Where are there low WTW greenhouse gas emissions, and energy inputs?

潯 Download							
County	State	Res Electric Rate (\$/M/Vh)	Com Electric Rate (\$/M/Vh)	Ind Electric Rate (\$/MV/h)	Res Forecourt Electrolysis (\$/kg)	Com Forecourt Electrolysis (\$/kg)	Ind Forecourt Electrolysis (\$/kg)
Stevens	Washington	57.37	58.68	41.27	5.99	6.07	5.03
Okanogan	Washington	56.94	52.58	44.50	5.97	5.71	5.23
Ferry	Washington	73.00	70.73	43.65	6.92	6.79	5.18
Whatcom	Washington	67.03	73.82	68.63	6.57	6.97	6.66
Chelan	Washington	30.09	32.08	20.09	4.37	4.49	3.77
San Juan	Washington	89.40	66.79	40.00	7.90	6.55	4.96

Accomplishments – What else?

Now	Where should I put hydrogen stations? Are there already stations there? Is there a hydrogen production facility nearby?
Coming Soon	What kind of renewable energy sources could I use to produce my hydrogen?Are there transmission lines near my new station? What voltage?Are there natural gas pipelines near my new station? What diameter?
Future	What about central hydrogen production? Are there laws and incentives that could help me? Is this an alternative-fuel-friendly location?

Collaboration – What is HyDRA's role?

- Goal: standard for the display of spatial hydrogen analyses
 - Repository for input data
 - Repository for results
- Integrate with other hydrogen models for detailed analysis and data processing results
 - MSM
 - TIAX Geo-Spatial Analysis of Hydrogen Production, Infrastructure and Feedstock Costs and Availability
 - HyDS ME (future)
 - Hydrogen delivery (future)
 - Feedstock delivery (future)

Collaboration – Moving past hydrogen

- HyDRA architecture supports other renewable energy and alternative fuel applications.
- Not funded by hydrogen, but hydrogen benefits from layers and functionality:
- Alternative Fuel Stations
- Solar photovoltaic (PV)
- Concentrated solar power (CSP)
- Biopower
- Diesel exhaust fluid (DEF)
- Ethanol plants
- Fleet analysis
- Wind

FY09

- Incorporate all datasets into new architecture
- Generate dynamic layers
- Complete basic analysis functions
 - Graphing
 - Changing underlying assumptions
 - Buffering

FY10

- Integrate with other hydrogen models and analyses
 - Build layers where appropriate
 - Display model results where appropriate
 - "Sneakernet"
 - Dynamic integration
- Create out-of-the-box case studies, similar to H2A
- Continue to build, enhance, and implement new data layers

Future Work – MSM integration

Programmatically integrate cost and emissions analysis Analyze other spatially varying cost and emissions data

Summary

