

... for a brighter future

Cost Implications of Hydrogen Quality Requirements

S. Ahmed. D. Papadias, and R. Kumar Chemical Sciences and Engineering Division Argonne National Laboratory

DOE Hydrogen Program Annual Merit Review May 18-22, 2009, Arlington, VA

Project ID # an_3_ahmed

This presentation does not contain any proprietary, confidential, or otherwise restricted information

UChicago

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Overview

Timeline

Project start date: FY 2007

- Project end date: Open
- Percent complete: N/A

Barriers

- B. Stove-Piped/Siloed Analytical Capability
 - Segmented resources
- D. Suite of Models and Tools
 - Macro-system models

Budget

- Funding, FY 07: \$200 K
- Funding, FY 08: \$350 K
- Funding, FY 09: \$200 K

Partners/Collaborators

- Energy Companies (BP, GTI)
- National Laboratories (NREL)
- International
 - Japan Gas Association
 - International Standards Org.

Objective

- Correlate impurity concentrations (in H₂) to the cost of hydrogen, as functions of
 - Process parameters (T, P, S/C, …)
 - Performance measures (H₂ recovery, efficiency)

Approach

- Define hydrogen production processes that can meet hydrogen quality requirements
 - SMR, NG-ATR, Coal Gas (CG) ATR
 - Reformate, syngas purification using PSA
- Model processes to determine sensitivity of process performance to
 - Design and operating parameters
 - P, T, S/C, sorbent, ...
- Support data integration into H2A

Milestones

Month-Year	Milestone
Feb. 2009	With NREL, incorporate NG-SR-PSA data into H2A
	In progress
Feb. 2009	Define processes to be modeled and analyzed for hydrogen production via coal gasification and water electrolysis <i>Model set up for coal gas to hydrogen pathway</i> (some preliminary results presented here)
Sep. 2009	Establish impurity concentration vs. efficiency correlation for coal derived hydrogen

Schematic of the SMR-PSA system (Base Case)

The model tracks 9 impurities through the system

- Natural gas feed contains He, N₂, S
- Air feeds (ATR, CG) contribute Ar, N₂
- Reformate to PSA contains
 - N₂, CH₄, CO₂, CO, NH₃, H₂S, He, Ar
- The PSA is very effective for removing H₂S, NH₃, H₂O, CO₂, CH₄
- Helium is not removed in the PSA
- The product hydrogen from PSA contains trace concentrations of He, CO, N₂, Ar, CO₂, CH₄

<u>Base Case</u>: A CO specification of 0.2 ppm limits the H_2 recovery to 74% and the efficiency to ~ 66%

Effect of Pressure

The process efficiency peaks at 10-12 atm

Higher pressures

- Improve impurity adsorption in PSA
- Increase hydrogen loss during PSA bed regeneration
- Reduce hydrogen concentrations in reformer product gas (i.e., PSA feed)

Preliminary Data

Effect of Carbon / Zeolite Proportion:

With increasing zeolite fraction, the limiting species changes from CO to N_2

Preliminary Data

<u>Variations in Natural Gas Composition</u>: Some NG contains much higher concentrations of N₂

Variation of natural gas composition (%)				
Species	Mean	10 percentile ¹		
CH ₄	93.1	83.9		
C ₂ H ₆	3.2	5.7		
C ₃ H ₈	0.7	1.1		
C ₄ H ₁₀	0.4	0.3		
CO ₂	1.0	1.4		
N ₂	1.6	6.1		
0 ₂	0.0	1.5		
LHV (kJ/mol)	817	785		

P: S/C T _{SM} T _{WG}	8 atm :: 4 (-) _R : 750 ℃ _{SS} : 435 ℃				
Reformate composition to PSA (%-dry)*					
Species	Mean	10 th percentile			
H ₂	76.4	75.4			
CH ₄	2.8	2.7			
CO ₂	17.5	17.7			
CO	2.8	2.8			
N ₂	0.4	1.4			

*Feed to PSA also includes 100 ppmv H₂S

¹Blazek, C.F., Kinast, J.A. and Freeman, P.M. (1993). Compressed natural gas measurement, A.G.A. Distribution/Transmission Conference, Orlando, Florida, May 16-19

Variations in Natural Gas Composition: N₂ concentration in product H₂ increases by a factor of ~6

Preliminary Data

Hydrogen cost is a weak function of CO concentration (based on NG price of \$7.6 / 1000 ft³ or \$7.8 / MMBTU)

<u>Natural Gas ATR-PSA</u>: Nitrogen limits the hydrogen recovery

Schematic for a H₂ production system using coal gasification and PSA

<u>*H*₂ from Coal Gasification and PSA</u>: Inerts (nitrogen and argon) limit the hydrogen recovery

Hydrogen Recovery in PSA, %

Argonne Model

- 4 adiabatic beds, 2 pressure equalizations
- Adsorbent mix: 60% activated carbon (BPL), 40% Zeolite 5A
- Tail-gas pressure: 1.3 bar-a

Air Liquide Model (Besancon, J Power Sources, 34(2009)

- 6 Beds
- Adsorbent mix: unknown
- Tail-gas pressure: 1.3 bar-a

Hydrogen Program

Summary of Technical Accomplishments

- A rigorous model of the PSA system has been set up as part of a flexible systems model (using Comsol Multiphysics and MATLAB)
 - 9 species can be tracked through the system
- The pathway for NG-SR-PSA has been studied over a broad range of design and operating parameters
 - The effect of several design and operating parameters on hydrogen quality and system efficiency has been established
 - Constraint: to meet SAE/ISO guideline values
- The system model results have been correlated with the cost of hydrogen (using H2A)
- Preliminary studies have been conducted for two additional pathways
 - NG-ATR-PSA
 - Coal Gas PSA

Collaborations

Presented results to stakeholders at numerous meetings

- ISO, Conferences, Tech Team
- Participated in modeling workshop with Japan Gas Association, GTI, and BP to validate model with field data
- Working with NREL to collect field data from gas supplier
- Exploring the (confidential) sharing of model results and field data with an energy company and a hydrogen producer (electrolysis)

Conclusions

- The cost of hydrogen is only slightly affected by the impurity specification (guideline) in the NG-SR-PSA system studied
- CO specification limits the hydrogen recovery for NG-SR for most process conditions
 - N₂ may become limiting species in a few cases
 - When the beds are loaded with high zeolite content
 - When the natural gas contains high concentrations of nitrogen
 - He passes through the NG-SR process
 - Emerges at a lower concentration
- For ATR of NG with PSA purification, Ar or N₂ specification may limit H₂ recovery
- Similarly, for coal gas reforming followed by PSA, the H₂ recovery may be limited by Ar or N₂

Future work

- Evaluate the impurity concentrations likely from other hydrogen production pathways
 - ATR, coal gasification, electrolysis
 - Coal gasification processes may be larger, central production plants
- Validate the NG-SR model results with field data
 - Incorporate more complex PSA systems if needed
- Incorporate our model results into H2A

This work is funded by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy

Argonne, a U. S. Department of Energy Office of Science Laboratory, is operated by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357

