

Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure

Andy Lutz, Dave Reichmuth Sandia National Laboratories Livermore, CA

May 19, 2009

AN_06_Lutz

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start Dec. 2007
- Finish Sep. 2012
- 30% complete

Budget

- Total project funding
 - DOE \$340K
- Funding received in FY08
 - \$150K
- Funding for FY09
 - \$190K

Barriers

- A. Future Market Behavior
- B. Stove-piped/Siloed Analytical Capability
- E. Unplanned Studies and Analysis

Targets

 Analyze issues and long term impacts related to infrastructure evolution, hydrogen fuel, and vehicles (Task 1)

Relevance / Objectives

Objectives

- Use dynamic models of interdependent infrastructure systems to analyze the impacts of widespread deployment of a hydrogen fueling infrastructure
- Identify potential system-wide deficiencies that would otherwise hinder infrastructure evolution, as well as mitigation strategies to avoid collateral effects on supporting systems

Relevance

 Transition to H2 fueling is expected to rely on distributed steam-methane reforming (SMR); we must understand the impact of hydrogen vehicles on the infrastructure

Milestones

ΜΜ / ΥΥΥΥ	Milestone
March / 2009	Include Plug-in hybrid electric vehicle (PHEV) adoption model to compete with hydrogen fuel cell vehicles (HFCV) in the model for California (CA) infrastructure
April / 2009	Define model of CA market economics for electricity generation, capacity and costs, to couple demand for natural gas (NG) and H2
June / 2009	Analyze impacts of PHEVs and HFCVs on demands for H2, NG, electricity in CA

- Analysis-driven approach defined by programmatic needs
 - Provide analysis and insight into the dynamic behavior of complex systems

System dynamics: Methodology

- Choose a region to define the system
 - Selected California as first application
- Pose detailed questions
 - At what HFCV penetration does the demand for NG-derived H2 negatively impact NG distribution?
 - How does adoption of HFCVs affect supply limits of NG?
 - What conditions affect the competition between HFCV and plug-in hybrids?

System dynamics: Analysis

- Formulate SD models of infrastructure components and interrelations to a sufficient level of detail
- Use Powersim software to quickly generate code

Assumptions

Infrastructure Model

Electric Supply

- NG generation adjustable
- Other generation is "must run"
- No elasticity in supply/demand
- Plug-in vehicles are re-charged at night
- Natural Gas Supply
 - Supply elasticity for CA market
 - Imported and domestic supply
- Gasoline Supply
 - Oil price: linear projection
 - Elasticity for CA refinery supply
- Hydrogen Supply
 - 1 path: Distributed SMR

Vehicle Model

- Conventional vehicles
 - Gasoline fueled: 20 mpg
- Plug-in Hybrid Electric Vehicles
 - 48 mpg in gasoline mode
 - 0.35 kWh/mile electric mode
 - 1/3rd of miles in gasoline mode (40-mile electric range)
- Hydrogen Fuel Cell Vehicles
 - 65 mi/kg
- Vehicle adoption
 - Adjusted to Scenario #1 of Greene et al (ORNL, 2008)
 - 6% yearly sales rate
 - 20 year vehicle lifetime (5% scrap rate)

Technical Progress: add PHEVs and couple electricity market to add multiple interactions

Market Interactions

- Compete PHEVs with HFCVs
 - PHEVs for sale in 2010
 - Coupling PHEVs to electric & gasoline demand
- In CA, electricity demand strongly coupled to NG supply infrastructure

Regulatory Issues

- Electric generation will change in CA
 - Renewable Portfolio Std
 - 20% by 2010
 - 33% by 2020
- Carbon tax on fossil fuels

Dynamic model couples energy markets to vehicle adoption model

Natural Gas

- Supply:
 - Imports & in-state production
- Demand:
 - Electric generation
 - Industrial, commercial, residential, and CNG vehicles (fixed)
 - HFCV demand from SMR
- Price:
 - Market elasticity
 - Long & short term
 - Determines H2 price

Electricity

• Supply:

- Imports (31% in 2007)
 - Coal (54% of imports)
- In-state production
 - Must-run: nuclear, hydro, geo, solar, wind, biomass
 - Variable: NG
- Demand:
 - Historical load data with hourly resolution (Cal-ISO over 1 yr)
 - Daily PHEV charging
- Price:
 - Weighted average of fixed & variable generation costs
 - Fill hourly demand with must-run, then NG

<u>Gasoline</u>

- Supply:
 - Refinery capacity for CA compliant gasoline
- Demand:
 - Conventional and PHEV consumption
- Price:
 - Oil price specified in time
 - Refining margin modeled with market elasticity
 - Short-term elasticity for supply
 - Long-term elasticity identifies major capacity additions

Vehicle adoption model competes PHEV and HFCV with conventional vehicles

9

- Adoption follows elements of Struben & Sterman model (MIT)
 - Willingness to adopt parameterized by marketing and word-of-mouth
 - Affinity of vehicle choice depends on
 - Fuel cost, vehicle incremental cost, efficiency (mileage)
- Adjusted to penetration Scenario #1 of Greene et al (ORNL) 2008 study
 - On-road HFCV 1% of fleet by 2025
 - Plug-in vehicles replace hybrids
- Vehicle penetrations are sensitive to
 - HFCV:
 - H2 price (from NG price)
 - HFCV mileage: reference = 65 mile/kg
 - PHEV:
 - Electricity price

Penetration of PHEV and HFCV increases H2 and NG costs

Gasoline price flattens with reduced demand

- Linear increase in oil price
 - From 65 \$/bbl to 140 \$/bbl at 2030
- Refining margin decreases, eventually to point where model becomes artificial at low demand
- Electricity price grows due to PHEV demand
- NG price increases due to both PHEV and HFCV demand
 - Consumption at 2050 approaches existing pipeline capacity
 - Major capacity increase necessary by 2040
- H2 price tracks NG for SMR
 - SMR is only path to H2

HFCVs must achieve high mileage to overcome plug-in vehicles

11

HFCV mileage

- Reference case: 65 mi/kg
- At 55 mi/kg, affinity for HFCV is less than affinity for PHEV

PHEV mileage

- 48 mpg in gasoline mode
- 0.35 kWh/mile electric mode
- 1/3rd of miles in gasoline mode
 - Based on National Household Travel Survey
 - 40 mile electric range

Growth in average electric load causes NG capacity to exceed existing infrastructure by 2025

- Electric load grows at 1% / year
 - Growth alone increases NG price 170% and electricity price 40%
- Vehicle choice
 - Higher average electric loads drive up NG price faster than electricity, favoring PHEVs over HFCVs

Price change relative to 2005

Absence of PHEVs allows earlier HFCV growth

- Higher HFCV sales rate after 2025 increases the final market share
 - HFCV price learning curve restricts early adoption
- NG price increases with HFCV rollout as demand approaches current infrastructure capacity

Carbon tax increases both PHEV and HFCV - at least for CA

- Change in vehicle fleet compared to non-taxed reference case
- Additional CA electricity generated from NG
- Conclusion not likely true for other regions!
- Carbon Tax at 200 \$ / tonne
 - 1.76 \$/gal gasoline
 - 1.85 \$/kg H2
 - 0.11 \$/kWh electricity
- Tax influence on fuel cost
 - PHEV ~ 4 ¢ / mile tax
 - HFCV ~ 3 ¢ / mile tax
 - Gasoline ~ 9 ¢ / mile tax

Aggressive renewable electricity frees NG supply and increases HFCVs

- Increasing renewable power
 - reduces NG demand
 - increases electricity price
 - HFCVs sales rise quickly in response to low NG price
- California's goal of 33% renewable electricity by 2020 requires over 1000 MW/yr of new renewable capacity
 - At linear rate of capacity increase, would result in 78% renewable power in 2050
- Caveat: model does not consider limits to potential for renewable power!

Summary

- System dynamics approach allows analysis of energy infrastructures
 - Model describes market behavior of interconnected infrastructures
 - HFCV market adoption varies with costs of NG, gasoline, electricity
- Simulations suggests that a transition to PHEV will increase NG price through electricity demand
 - Since model assumes SMR to H2 only, HFCV competes with PHEV
- Electric load growth (alone) is enough to stress CA's NG market
 - Capacity to import gas from will be exceeded by 2035
 - Aggressive HFCV scenario based on H2 from reforming will move the NG capacity problem up a decade
- Carbon tax will favor the adoption of both PHEV and HFCV
- Renewable power will free up NG for supplying HFCV

Future Work

Remainder of FY09:

- Dynamics of NG pipeline and storage system
 - Canadian NG demand in winter reduces flow to California
 - · Flow to CA in fall fills storage for winter
 - Weekday / weekend demand changes
- Electrolysis option for H2 production
 - Compete off-peak H2 production with PHEV charging
 - Enable renewable H2 with growth in solar/wind
- Model construction of additional electric generation capacity
- Peer Review:
 - Local connections with UC Davis ITS and CA-Fuel Cell Partnership
- FY10:
 - Extend SD approach to another region in US
 - Modify electrical generation model for regional mix

