

Dimensionally Stable MembranesTM

Cortney K. Mittelsteadt*, William Braff, Shelly VanBlarcom, Han Liu Giner Electrochemical Systems, LLC

Fred Johnson, Israel Cabasso SUNY-ESF

Project ID # fc_02_mittelsteadt

2009 DOE Hydrogen Review

Dimensionally Stable Membranes for High

Temperature Applications Timeline Barriers addressed

- Begin 4/3/2006
- Review 4/2/2009
- 65% Complete

Budget

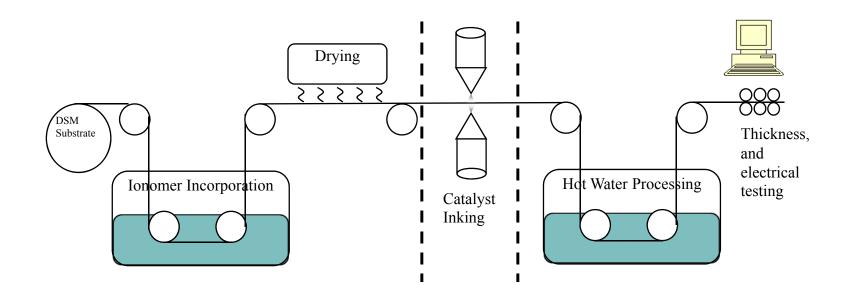
- Total project funding (to 2009)
 - \$949K DOE Funding
 - \$589K Recipient
 - 37% Cost Share
 - \$350K received FY 2008
 - \$65K Remaining (through Feb '09)
 - \$871K DOE funds spent to date

- A. Durability
- B. Cost
- Technical Targets (DOE 2010 Targets)
- 0.10 S/cm at 1.5 kPa H₂O Air inlet
- $<$40/m^2$
- > 5000 h lifetime
- Stability in Condensing conditions
 Partners
- General Motors
- SUNY-ESF

OVERVIEW

- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membranes™
- CHALLENGES

OBJECTIVES

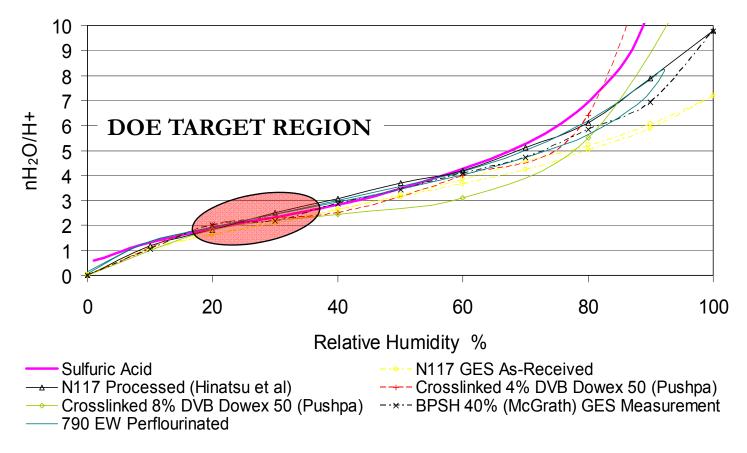

YEAR	OBJECTIVE
2006	Determine the effect of pore size and substrate thickness on conductivity and water uptake.
	Demonstrate polymerization conditions suitable for bulk polymerization of the PFSA.
2007	Demonstrate, by the 3rd Quarter, membrane conductivity of 0.07 S/cm at 80% relative humidity at room temperature using non- Nafion materials. Samples will be prepared and delivered to the Topic 2 Awardee.
2008	Go/No-Go Decision: Demonstrate, by the 3rd Quarter, membrane conductivity > 0.1 S/cm at 25% relative humidity at 120°C using non-Nafion [®] materials. Samples will be prepared and delivered to the Topic 2 Awardee.

OBJECTIVES: Ultimate Goal

Meet performance targets with film that can be generated in roll at DOE cost targets

OVERVIEW

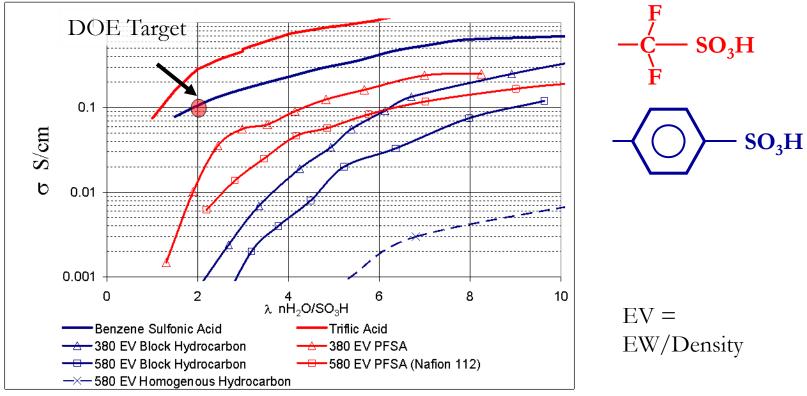
- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membranes™
- CHALLENGES


APPROACH: Rationale

- Limitations of Ionomers based on –SO₃H functionality
 - Water uptake/retention as a function of RH
 - Conductivity Limitations
 - Dependence on Water
 - Functionality

APPROACH: Rationale Water Uptake of Ionomers based on –SO₃H Moiety

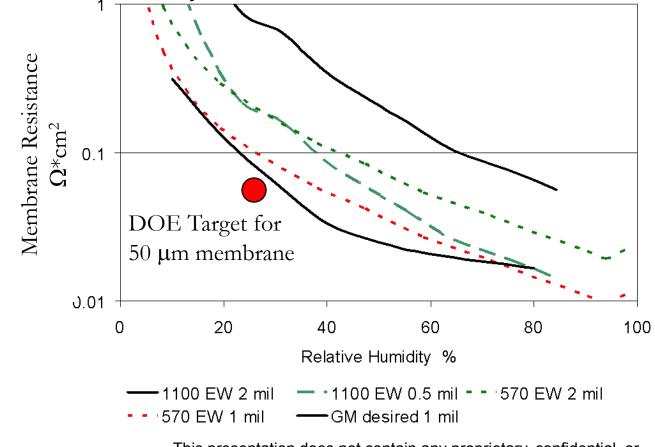
Water Content is the same regardless of pendant group


2009 DOE Hydrogen Review

APPROACH: Rationale Importance Of Ionic Functional Group, Morphology

Conductivity of Various Ionomers and Model Compounds at 80°C

2009 DOE Hydrogen Review



APPROACH: Rationale

Limitations of Ionomers Based on -SO₃H Moiety

Predicted Conductivity at 100°C for Various Perfluorinated Membranes

APPROACH: Rationale

CONCLUSIONS

SO₃H Polymers will need

•Very low EW

•Perfluorinated End Groups

•To be very thin

THESE THREE REQUIREMENTS LEAD TO POOR MECHANICALS

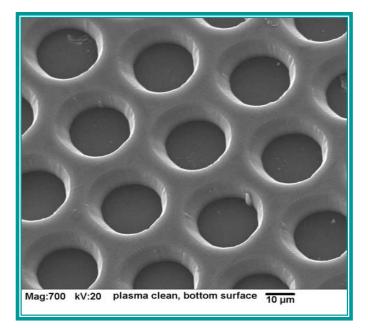
OVERVIEW

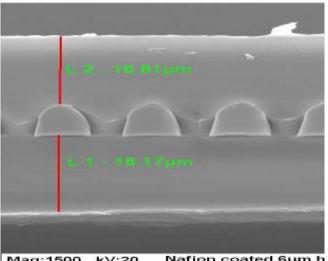
- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes™
 - Three Dimensionally Stable Membrane[™]
- CHALLENGES

Approach: Lower EW of perfluorosulfonic Acid ionomers to increase low RH conductivity and support the ionomer with two and three-dimensional non-ionic materials

- Two Dimensionally Stable Membrane™
 - Generate Supports
 - Thickness and Pore Size
 - Incorporate Ionomers
 - 700 to 1100 EW PFSA
 - Characterize
 - Performance
 - Durability
 - Cost/Manufacturability

Mag:700 kV:20 plasma clean, bottom surface 10 μm


- Three Dimensionally Stable Membrane[™]
 - Develop Bulk Polymerization Methods
 - Polymerize in Selected Supports
 - Characterize
 - Performance
 - Durability
 - Cost/Manufacturability

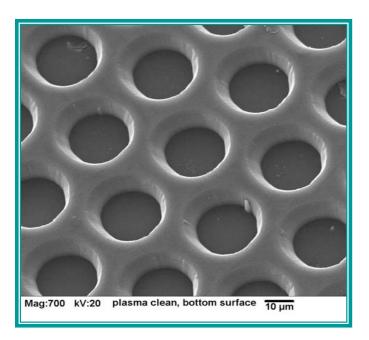


APPROACH: $2DSM^{TM}$:

COMPOSITE POLYMER ELECTROLYTE MEMBRANES • DSM[™] is high acid content membrane reinforced with high strength polymer support

< 1 Mil Diameter hole Nearly 1,000,000 holes/in²

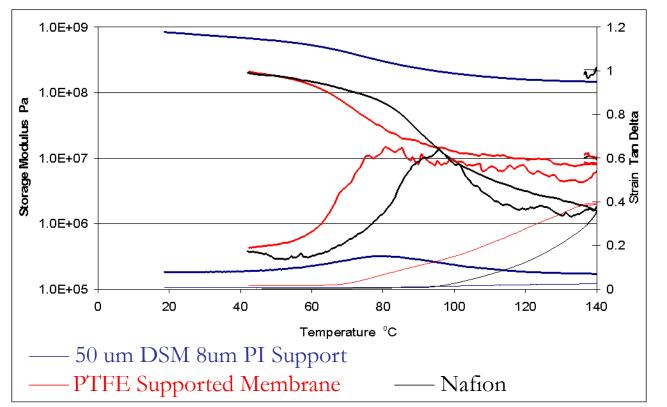
Nafion coated 6um h Mag:1500 kV:20



APPROACH: $2DSM^{TM}$

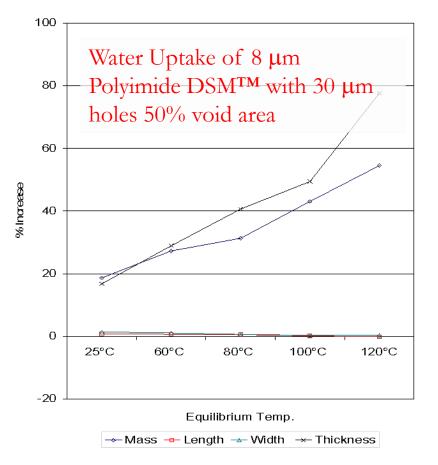
Dimensionally Stable Membrane[™] Support Structures Used to Date

Material, condition	Young's Modulus (Mpa)
Nafion [®] 112 Dry 20°C	300
Nafion [®] 112 Wet 80°C	70
Poly(tetrafluoroethylene) (PTFE)	400
Polysulfone	2600
Poly(etherether-ketone) (PEEK)	2700
Polyimide (PI), e.g., Kapton [®]	2900



ACCOMPLISHMENTS: $2DSM^{TM}$

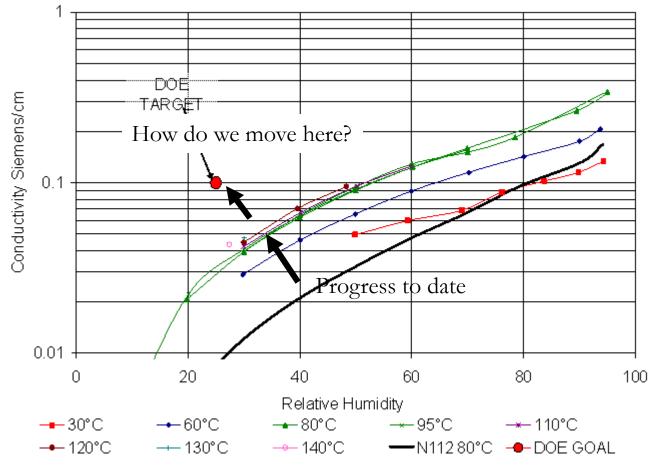
Increased Modulus of Support Material Leads to Proportional Increase in Composite Material



ACCOMPLISHMENTS: 2DSMTM

Effect of Pore Size on Water Uptake

- No macroscopic swelling on the X-Y plane
- Effect is the same for
 - pore sizes of 10-40μm
 - Support thickness of 8-25 µm
 - EW of fill of 700-1100 EW
- Membrane retains integrity even after tested at 120°C in water.
- SIGNIFICANTLY Improves, handling and storage of membranes
- We were not able to generate 75% void area materials



ACCOMPLISHMENTS: 2DSMTM

In-Plane Conductivity

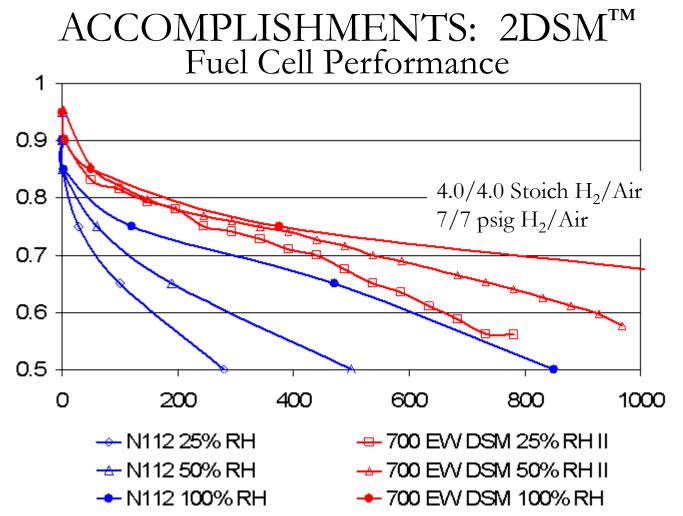
700 EW Membrane with DSMTM Support, Conductivity as a function of RH



2009 DOE Hydrogen Review

ACCOMPLISHMENTS: 2DSMTM

Fuel Cell Performance

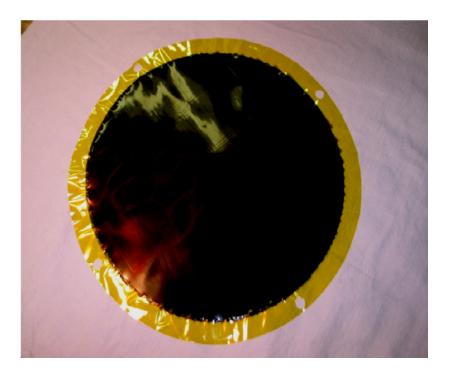


25% RH data much worse than predicted based on DSMTM conductivity and high-frequency resistance: Work to do on the catalyst layer

2009 DOE Hydrogen Review

25% RH data much worse than predicted based on DSM[™] conductivity and high-frequency

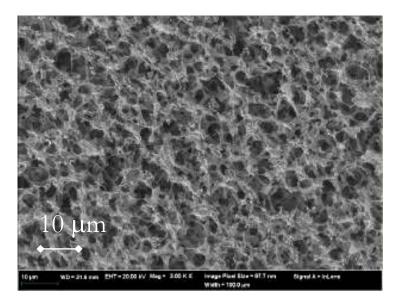
resistance: Work to do on the catalyst layer


2009 DOE Hydrogen Review

ACCOMPLISHMENTS: 2DSM[™] MEA Fabrication

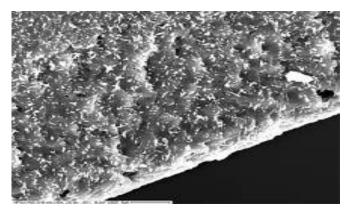
- Generated 200 cm²
 MEA
- Catalyst Applied Directly To Membrane
- No Decal Transfer

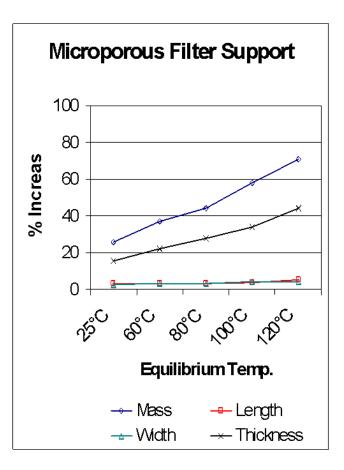
OVERVIEW


- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes™
 - Three Dimensionally Stable Membrane™
- CHALLENGES

APPROACH: $3DSM^{TM}$

- Cost of Laser Drilling
 Prohibitively High
- Three-Dimensional Supports Commercially Available
- Using Conventional PFSA Ionomers to Meet Cost Targets
- Synthesizing New Low EW Ionomers to Meet Performance Targets
 - Work being done by Israel Cabasso's Group at SUNY Syracuse Polymer Research Institute

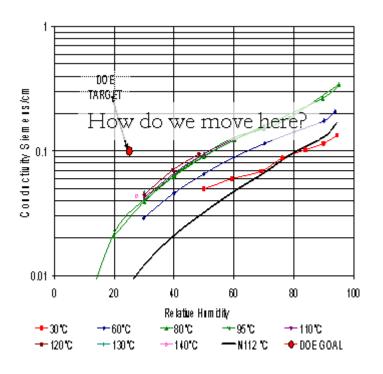




ACCOMPLISHMENTS: 3DSMTM

-Commercial PFSA

- Filled Supports With
 Commercial PFSA Material
- Swelling is Comparable to 2DSM[™]
- Completely Filling Support was a Major Challenge
- ~33% Conductivity Penalty



APPROACH: 3DSM[™] Alternative Synthesis

Synthesis of new PFSA Monomers Working with SUNY-ESF to make new copolymers

CF2=CF OCF2CF(CF3)OCF2CF2SO2F

+ ?

Three non-PTFE copolymers successfully synthesized. EW from 500-1300.

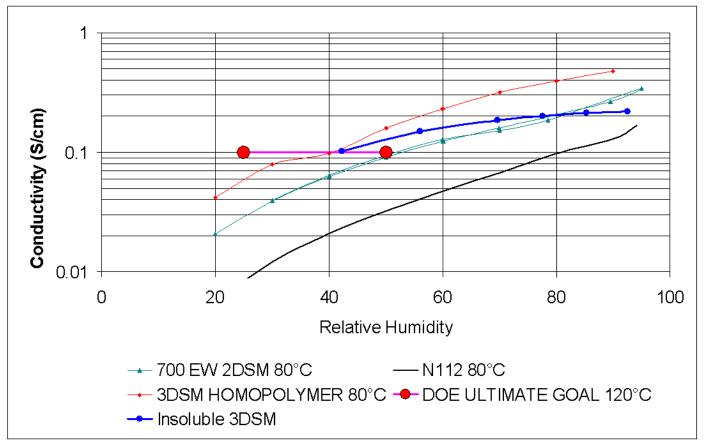
ACCOMPLISHMENTS: $3DSM^{TM}$ Alternative Synthesis: Homopolymer

Synthesis of new PFSA Monomers Working with SUNY-ESF to make new copolymers and homopolymer

OCF₂CF(CF₃)OCF₂CF₂SO₂F

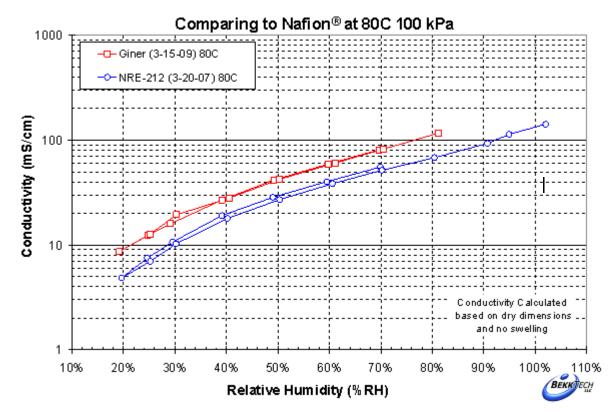
+ ?

Three non-PTFE copolymers successfully synthesized. EW from 500-1300.


Getting closer to DOE target! This polymer is water soluble

2009 DOE Hydrogen Review

Accomplishments 3DSMTM: New Insoluble low EW PFSA


Insoluble High Performing 3DSMTMGenerated

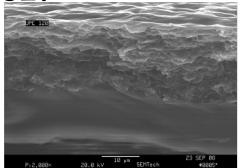
2009 DOE Hydrogen Review

Accomplishments 3DSM[™]: New Insoluble low EW PFSA

Bekktech testing considerably under our own Material is inconsistent

Our data matched well for past samples

2009 DOE Hydrogen Review



Accomplishments: 3DSMTM:

How to make thinner?

- Commercially available supports are ~ 2 mils in thickness after filled and sintered.
- Commercial supports have "skin" from casting process, which is a resistive barrier

• Working with Millipore on thinner, skinless supports

Material/	Ionomer	Thickness	Thru-Plane σ
Pore Size	EW	mils	N1100 = 1
A/1.2µm	1100	2.6	0.6
B/1.2µm	1100	3.9	0.9
C/0.45µm	1100	1.0	0.5
D/0.6µm	1100	0.9	0.1
Е/0.6µm	1100	0.45	0.7

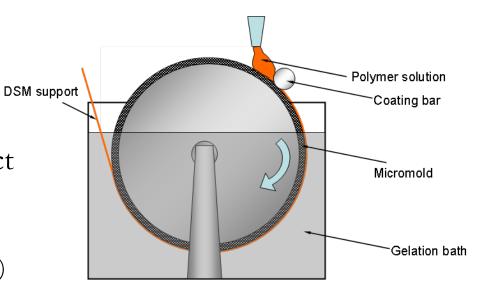
Accomplishments: Accomplishments: DE Hydroge

- Three Membranes Tested (all 2 mils)
 - $3DSM^{TM}$ with 1100 EW
 - $2DSM^{TM}$ with 700 EW
 - $2DSM^{TM}$ with 700 EW
 - Extruded Nafion[®] 112
- All 4 passed 10,000 Cycles
 - 80°C
 - 2 min 95°C dew point
 - 2 min bone-dry
 - 1SLPM

OVERVIEW

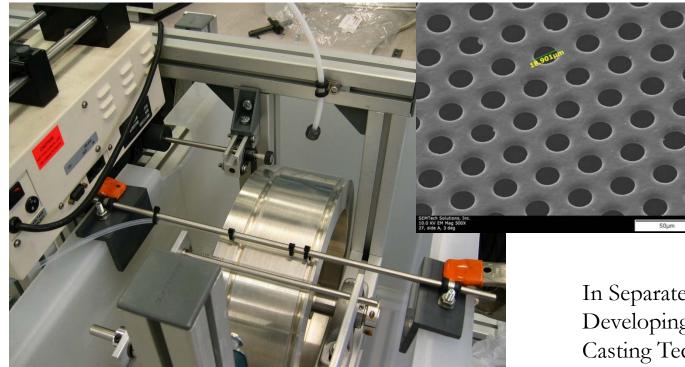
- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membrane™
- CHALLENGES

OVERVIEW


- OBJECTIVES
- APPROACH and ACCOMPLISHMENTS
 - Rationale
 - Two Dimensionally Stable Membranes[™]
 - Three Dimensionally Stable Membrane[™]
- OTHER OPPORTUNITIES
- CHALLENGES

Challenges: 2DSM[™]

- Biggest Challenge is Cost
 - Laser Drilling
 - Currently ~ $1/cm^2$
 - Projected \sim \$0.02/cm² D
 - $$200/m^2$
 - In Separate DOE Project Developing Low-Cost Casting Technique
 - (DE-FG02-05ER84322)



• Currently testing continuous roll process

Challenges: 2DSM[™]

Automatic solution dispensing Automatic speed control Manual support collection Solution recycling can be implemented In Separate DOE Project Developing Low-Cost Casting Technique (**DE-FG02-05ER84322**) PI: Han Liu

2009 DOE Hydrogen Review

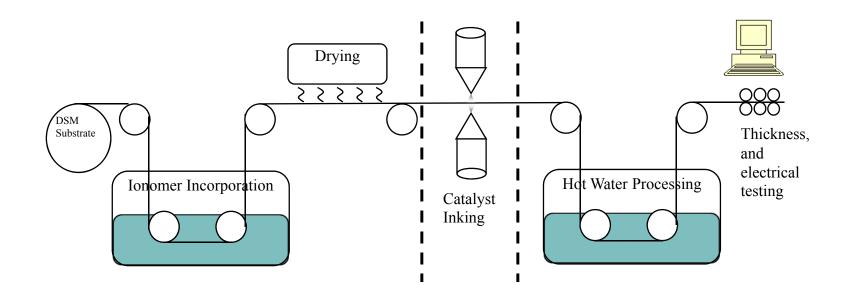
Challenges: 3DSMTM

- Incorporate lower EW ionomers into support
- Minimize resistance penalty due to "skin"
- Demonstrate improved fuel cell performance

Proposed Future Work: Thinner, Faster, Stronger

- Need to down-select for last two years
 - 2DSMTM
 - 3DSMTM
- Develop along that pathway and demonstrate
 - Cost feasibility
 - Fuel Cell Performance
 - RH Cycling Durability

SUMMARY


- Year 1 Milestones Achieved
 - DSMs with a wide range of pore size and thickness restrain x-y swelling
 - Polyimide and polysulfone both shown to be effective supports
 - Effective methods of generating new PFSA polymers have been generated
- Year 2 Milestones Achieved
 - Conductivity targets have been met
 - Discrepancy between Bekktech and GES results
 - Fuel Cell Performance Improvements Shown
 - Electrode Improvements
- Realistic Pathways for Meeting Cost Targets Seen for both Paths
- To reach ultimate DOE Goals we will need to continue improving the low EW materials that have been developed at SUNY

OBJECTIVES: Ultimate Goal

Meet performance targets with film that can be generated in roll at DOE cost targets

