

Protic Salt Polymer Membranes:

High-Temperature Water-Free Proton-Conducting Membranes

Name: Don Gervasio (PI) Organization: Arizona State University

in collaboration with C.A. Angell, R. Marzke, J. Yarger (co-PI) Arizona State University; W. Youngs (co-PI) University of Akron

> Date: Tue, May 19, 2009 Time: 11:30 am

Project ID fc_06_gervasio

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Don.Gervasio@asu.edu

Overview

Timeline

- January 15, 2006
- January 14, 2011
 - go/no go end of year 3
 - March 2009
- 60% completed

Barriers

- Barriers addressed by this project from the HFCIT Program Multi-Year Program Plan
 - (A) Durability
 - (C) Electrode Performance

Budget

- Total project funding \$1,500K
 - DOE: 80%, Contractor: 20%
- Funding received in FY06
 - \$300,000
- Funding for FY07
 - \$300,000
- Funding for FY08
 - \$300,000

Partners

- Arizona State University (lead)
- University of Akron (sub-contractor)
- Boeing
- DOE Technology Development Manager: Donna Lee Ho
- DOE Project Officer: Greg Kleen
- ANL Technical Advisor: Thomas Benjamin

Relevance

OBJECTIVE:

To make a solid water-insoluble anhydrous proton-conducting electrolyte membrane that has good

o DURABILITY by virtue of having

- proton conductivity that surpasses the 2009 target of > 0.1 S/cm at 120°C and 50% RH
- effectively having no co-transport of molecular species with proton
- good mechanical strength and chemical stability

(a)

(b)

o ELECTRODE PERFORMANCE by assisting catalyst to promote reduced activation overvoltage a) Non-conducting

a) Non-conducting Low water form

The water solvated acid membrane only conducts proton under conditions (b) pendant acid and waters are in contact with adjacent units

Benefits

High conductivity and Lower activation overvoltage lead to higher efficiency

No co-transport of water and higher temperature operation lead to elimination of bulky humidifier and radiator

Approach

SYNTHESIS OF "DRY" PROTON ELECTROLYTE MEMBRANES (PEMs)

- PEMs are being made based on "solvent free" liquid salts called *protic ionic liquid (pIL) concepts*.
- *pILs* can be *used to model membranes* (stability, conductivity).
- Acid and base moieties are varied to optimize electrolyte properties.
- **Polymers** are **varied** to optimize membrane solubility for water insoluble membranes with a high density (low EW) of covalently and electrostatically bound non-leachable ions.

CHARACTERIZATION

- Proton conductivity characterized by electrochemical impedance spectroscopy (EIS) from -20 to 120°C
- Thermal oxidative stability of electrolytes measured by Thermal Gravimetry (TGA) from -20 to 120°C
- Electrochemical stability and electrode polarization surveyed by cyclic voltammetry on Pt
- Fuel cell performance/stability estimated by steady state I/V curves
- The mechanism of transport of protons, anions, and molecules investigated 3 NMR methods:
 - 1. pulse field gradient NMR to determine the diffusivity of ions,
 - 2. multipulse solid state NMR to measure the molecular motion and interactions of species in membranes,
 - 3. MRI while passing current to measure time-dependent distribution of species during proton conduction.

Approach/Milestones

Month/Year	Milestone for Go/No-Go Decision		
Jan-09	 Milestone: 2 kinds of high temperature proton-conducting protic salts membranes were made into MEAs and tested in fuel cells: (i) membranes filled with leachable protic ionic liquids and (ii) membranes with non-leachable salt moieties Determine conductivity of membrane at 0 to 50% RH and the full range of temperature (-40 to 120°C) and compare to target of 0.1 S/cm . Determine conductivity in absence of water and other free solvents. 		
Feb-09	Milestone: Complete initial round of MEA fabrication and testing with selected new polymers (4 sent to Bekktech for evalution and 2 more in progress) for external validation on the membrane conductivity at various temperatures and RH conditions.		
Feb-09	 A neat indium tin phosphate (ITP) membrane was made that has conductivity 0.16 S/cm from 25°C to greater than 120°C and 0% RH. Crossover eliminated by blending 70 wt% ITP with 30 wt% of a proton conducting organic polymer, PVPP, but at a cost of reduced conductivity. 		

PROTIC IONIC LIQUID (pIL) CONCEPTS

□ plLs belong to a new class of solvent-free proton-conducting electrolyte that can function at very high temperatures

□ A protic ionic liquid (plL) is made by transferring a proton from an acid to a base.

Energy Diagram for the EAN (*ethyl ammonium nitrate*) *plL with:*

- proton transferred (Left)
- not transferred (Right),

Gurney proton energy level diagram. For any pair of levels, the stable entities are upper right and lower left.

Plan & Progress

Technical Accomplishments FY08: Fuel Cell with plL and gas fed Porous Electrode

- Fuel cells with protic salts still show better performance than with 85% H₃PO₄
- New material goal, a more stable and non wetting electolyte

Technical Accomplishments FY08:

: Arrhenius plot of conductivity of ammonium salt mixtures

Technical Accomplishments FY08: : *Fuel Cells with New Stable PIL Electrolytes*

binary ammonium salt mixtures:

trifluoromethansefulonate (triflate, Tf) + trifluoroacetate (TFAc),

- trifluoroacetate + nitrate,
- triflate + nitrate.

A Tafel plot, cell potential (V) versus log of current density, for a series of inorganic binary ammonium salts, an organic ammonium salt, and phosphoric acid. The plateau at low current density indicates barrier free electroreduction.

Data from: Binary inorganic salt mixtures as high conductivity liquid electrolytes for > 100°C fuel cells, Jean-Philippe Belieres, Don Gervasio and C. Austen Angell, *Chem. Commun.*, 2006, 4799.

Summary of recent results

* New stable electrolyte found

- * Tafel plots of the fuel cell data for ionic liquids indicate barrier free O_2 reduction at low currents probably due to the low water activity of the salts.
- * The inorganic ammonium salts exhibit more polarization at intermediate loads, probably due to adsorption but remain stable through higher cell loads.

* Beyond the potential enhancement performance of an ionic protic liquid, a non-hydrous electrolyte allows for a greater array of catalysts and electrodes to be considered for use in a proton exchange fuel cell.

What's next?

- Further tailor mixtures with non adsorbing components for higher performance
- Continue fuel cell test of membranes loaded with salt mixtures
- Make polymeric forms of salt mixtures

Technical Results: More Efficient and Stable Fuel Cell with an Electrochemically and Physically stable plL, 2-FPTf

STEADY STATE I/V curves for H₂ and O₂ fed to Pt-catalyzed porous electrodes in 2-FPTf electrolyte at 80C and 120C and 85% phosphoric acid electrolyte at 80C. σ (2-FPTf) = 4x10⁻³ Scm⁻¹ A = 0.5 cm², t^{electrolyte} = 0.3 cm.

Why is fuel cell better with this salt electrolyte ??

Technical Results:Cyclic voltammogram of Pt surface in:

- aqueous sulfuric acid electrolyte (solid black line)
- versus protic salt (dotted blue line).

Low water activity makes Pt a better <u>cathode</u> electrocatalyst

Technical Results: Voltammetry of Pt with Oxygen in:

Voltammetry of Pt in 2-fluorpyridium triflate shows:

- Stable after 100 cycles in presence of O₂
- O₂ reduction starts near thermodynamic limit [1.18V at 80°C]
- Oxidation current at E>1.18V *is not for electrolyte oxidation*

its for water oxidation to O₂

Technical Results: Effects of Dispersed and Bulk Water

Technical Results: Voltammetry of Pt in Fluorinated Ionic Liquid Electrolytes:

without bulk water

with bulk water

•Voltammetry of 2-Fluoropyridinium triflate shows that it is stable after 100 cycles.
•Oxygen reduction starts near the thermodynamic limit for ORR [1.18V at 80°C]

Technical Results: hydrocarbon plL vs fluorocarbon plL

Technical Results: Voltammetry of hydrocarbon and fluorocarbon Ionic Liquid Electrolytes

Voltammetry of Pt in pyridinium phosphate shows:

Oxidatively unstable

Current Density

Current Density

Lower O2 reduction current

Voltammetry of Pt in 2-fluorpyridium triflate shows:

- Stable after 100 cycles in presence of O₂
- O₂ reduction starts near thermodynamic limit [1.18V at 80°C

Technical Results: Conductivity of Liquid hydrocarbon vs fluorcarbon plL

as a function of temperature, dry H2 gas fed to ETEK ELAT Pt anode and cathode

Liquid hydrocarbon plL pyridinium phosphate (PP) Liquid fluorocarbond Fluoropyridinium triflate2-FPTf

Technical Accomplishments:

a stable & conductive membrane with immobilized ions in membrane

Schematic Diagram of Liquid vs Solid PEM Fuel Cell

micro fuel cell with liquid electrolyte, like phosphoric acid.

micro fuel cell with PEM electrolyte, like Nafion[®].

FY08: Technical Accomplishments: non-leachable PEM 1

Fuel Cell I/V Curve

²ower / mW cm⁻²

EIS for H⁺ conductivity

Impedance and polarization curves for "dry" non leachable membranes consisting of an Anodisc (Whatman alumina membrane, t = 60 micron, pore diameter = 100 micron) filled with solid polysiloxane with pendant sulfonic acid that fully neutralized with methylamine

21

Summary on non-leachable Siloxane-based PEMs

Two non-leachable siloxane protic salt polymer membranes

1. Pendant sulfonic acid polymer fully neutralized with methyl amine

Critique of non-leachable PEM

Pro: These data illustrate using a *protic-salt membrane* as a "dry" proton-conductor in a fuel cell membrane.

Con: siloxane membranes have limited physical stability (soft and water soluble) resulting in low performance (low open circuit voltage OCV, 0.45V, and low power, 2mW/cm²) in a fuel cell due to reactant crossover in this PEM.

What's next?

2. Pendant propyl amine polymer fully neutralized with methyl sulfonic acid

FY09: Technical Accomplishments: non-leachable PEM

Poly Vinyl Pyridinium Phosphate (PVPP)

I/V curve for H_2/O_2 fuel-cell with poly vinyl pyridine fully neutralized with phosphoric acid. Pt loading =0.5 mg/cm² E-Tek ELAT electrodes. σ =0.005 S/cm. Temp. = 162°C;

Conductivity of poly vinyl pyridine with 1 H3PO4 per 1 pyridine as a function of temperature.

FY09: Technical result: Liquid versus Solid Membrane of Pyridine Phosphate

Conductivity of non-leachable solid poly vinyl pyridine with $1 H_3PO_4$ per 1 pyridine proton conducting PEM as a function of temperature.

 $1000 / T (K^{-1})$ Conductivity of liquid pyridinium phosphate as a function of temperature, H_2 gas fed to both anode and cathode. Electrodes are Etek ELAT with 0.5 mg Pt/cm².

з

3.5

SIMILAR !

Technical Result: Cell voltage in time at constant load for a H_2/O_2 fuel-cell with a PVPP membrane

Cell voltage in time at constant load for a H_2/O_2 fuel-cell with a membrane made of polyvinylpyridine in which each pyridine is reacted with phosphoric acid. Pt loading =0.5 mg/cm² E-Tek ELAT electrodes. Load is 30 mA/cm². Temperature = 162°C.

The cell was run overnight under constant load of 30 mA/cm². After this overnight test, the polarization (I/V test) did not change.

Overnight fuel cell stability while passing H⁺ current

Strong evidence that the proton is hopping through this solid membrane that has no leachable ions or solvents.

Technical Result: E-chem H-Pump with PVPP membrane

Technical Result: Galvanostatic electrolysis of water on Pt in PVPP PEM cell

PVPP membrane requires no water for H⁺ conduction yet allows water electrolysis

Cell voltage in time for the galvanostatic electrolysis of water on E-tek ELAT electrode with Pt loading of 0.5 mg/cm² used for anode and cathode with a solid electrolyte membrane (t=35 mil) of polyvinyl pyridinium phosphate (PV P⁺: $H_2PO_4^-$; 1:1). Constant cell load current = 11 mA/cm², Cell Temperature = 150°C, Argon flow humidified at 80°C.

Proton only conducted

Technical Result: Proton Conducting Membranes of Ceramic & Ceramic Organic Polymer Blend

*Sample sent to Bekktech in March 2009

Technical Result: I/V curve for a fuel cell with neat ITP vs. a 70% ITP-30%PVPP membrane

Neat ITP

Blend 70% ITP 30% PVPP

t=1mm, active area: 0.5cm² and electrode of ~22nm sputtered Pt and E-Tek GDL fed dry H₂/O₂, Room Temperature to 250C

Conclusions about Membranes with pure ITP and ITP-PVPP Blend

The best fuel cell results with ITP-PVPP blend were at T >200C, which is unusual ... since TGA suggests that the PVPP organic compound should have decomposed.

The highest conductivity found for ITP-pVPP blend was ~ 0.014 S/cm @ 275C. There was an unexpected drop in conductivity between 25C and 100C.

Pure ITP (10% In 90% Sn), has better conductivity than the blended pellet, which is expected since the conductivity of pure PVPP is lower than pure ITP.

Pure ITP showed higher power than blend

Still finding a suitable ITP-polymer blend is desirable to stop crossover in pure ceramic ITP

Technical Accomplishment: classifying strong- and super-acids Table of *N-H Proton chemical shifts for plLs:

<u>Acid</u>	<u>H₂O in plL</u>	<u>δ (N-H)</u>	
	(ppm)	(ppm)	*for base diethylmethylamine (DEMA),
HFeI4			pKa (aqueous) = 10.55
HAlCl ₄	Very	4.618	
	low		
HBF ₄		5.0	
HTFSI	101	6.697	
HBETI	183	6.65	
HI			
HClO ₄	31	7.010	Strong acid case
			shielded proton
HTf	24	7.771	Weak base, conjugate to
HSbF ₆	469	8.56 ??	weak acid case
$H_2Cl_2^{**}$			A- strong base, conjugate to
HBr			proton weak acid Big downfield shift from TMS reference
HC1			
HCH ₃ SO ₃	910	9.5	
$HN(CN)_2$	1603**	9.5	
HNO ₃	36	9.730	Erom: L. B. Delieres in the L&EC division
HCl ₂ CHAc	1476	10.245	Paper #82, ACS, Philadelphia, PA 2008
	**		
HTfAc	230	11.268	Chemical shift can be used for
			characterizing H+ onvironment
Citric acid			
HAc	1306**	14.0	

31

Future Work

Continue to make and characterize plLs to model membranes

- i. Focus on non-leachable PEMs consisting of novel polymers and polymer blends with ceramics which allow all acid and base moieties to be immobilized by covalent and electrostatic binding.
 - a.ITP
 - b. Develop Polyphosphazenes as low EW, heat-melt formed and water insoluble membranes, Polyvinyl pyridines (PVPP), fluorinated (PVPP)
 - c. Blends of a and b.
- Echem NMR and FTIR
 - Continue pulse field gradient for H⁺ mobility of new materials
 - NMR Imaging under H⁺ current ("NMR Hittorf") experiment to investigate distribution of species during proton conduction
- □ Voltammetry of Pt and other metal electrodes in PILs to investigate:
 - Pt-oxide formation
 - Adsorption of plL on Pt
 - Check for O₂ reduction activity on Pt and non-Pt catalysts
 - In situ Electrochemistry and FTIR to determine adsorption of hydrocarbon versus fluorocarbon plLs

Summary

□ Relevance: simpler more efficient fuel cell by using protic salt electrolyte membranes

□ Approach: Protic salt membrane electrolytes conduct proton with no bulk water giving

- simplified fuel cell with:
 - no humidifier
 - smaller radiator
- little or no Pt-OH on Pt surface for:
 - Lower overpotential for oxygen reduction, therefore higher cell efficiency
 - Possibly lower corrosion of Pt and lower Pt particle growth

□ Technical accomplishments: Status of Protic Ionic Liquids (plLs)

- Designed plLs for high proton conductivity and fuel cell performance
- Found stable plLs
- Combined high activity and stability in some cases
- Demonstrated proton conductivity and fuel cell performance in non-leachable protic salt polymer and ceramic membranes
- Synthesized new poly-phosphazene polymer with pendant nitrogen heterocycles
- ITP and polymer blends showed high proton conductivity from 25 to 200C

Proposed Future Work:

- Focus on plLs as guides to making non-leachable proton conducting salt membranes ITP, poly-phosphazenes, and blends
- Continue NMR characterization of relative proton and counterion mobilities.
- Chemical NMR imaging of membranes as a function of proton current.

Collaborations

Project collaborators:

- 1. Don Gervasio (PI) in collaboration with C.A. Angell, R. Marzke, J. Yarger (co-PI) at Arizona State University
- 2. W. Youngs (co-PI) University of Akron
- 3. Industry, Boeing Co.