

Fuel Cell Technologies

Dimitrios Papageorgopoulos

2009 DOE Hydrogen Program & Vehicle Technologies Program

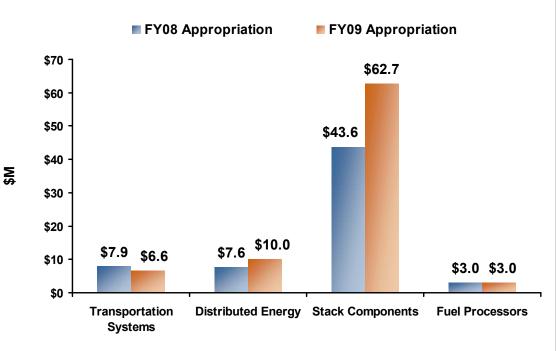
Merit Review and Peer Evaluation Meeting

May 19, 2009

Goal and Objectives

<u>Goal:</u> Develop and demonstrate fuel cell technologies for transportation, stationary, and portable power applications.

- Stationary power and other early market fuel cell applications
 - By 2011, develop a distributed generation PEM fuel cell system operating on natural gas or LPG that achieves 40% electrical efficiency and 40,000 hours durability at \$750/kW.
 - By 2010, develop a fuel cell system for consumer electronics (<50 W) with an energy density of 1,000 Wh/L.
 - By 2010, develop a fuel cell system for auxiliary power units (3-30 kW) with a specific power of 100 W/kg and a power density of 100 W/L.

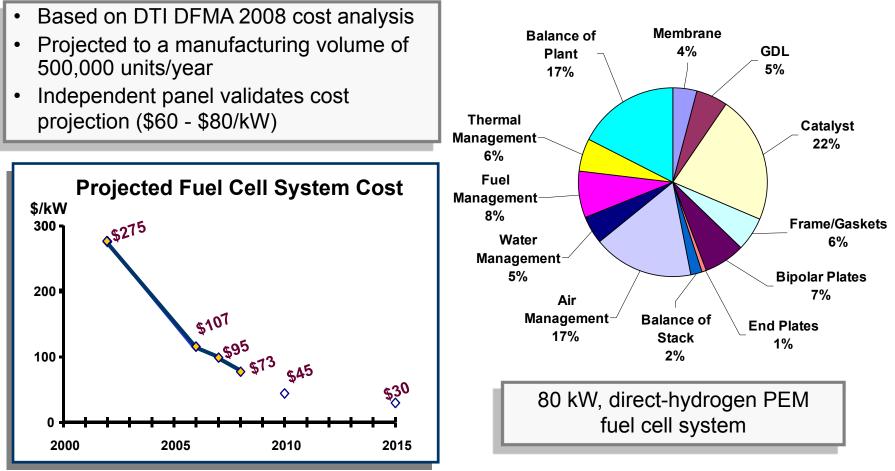

Transportation applications

By 2010, develop a 60% peak-efficiency, direct-hydrogen fuel cell system at a cost of \$45/kW with 5,000 hours of durability; by 2015, a cost of \$30/kW.

FY 2009 Appropriation = \$82.3M

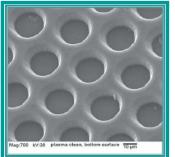
FY 2008 Appropriation = \$62.1M

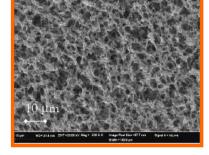
EMPHASIS


- Develop membranes for hightemperature, low-relative humidity operation; assess progress against interim targets.
- Increase catalyst activity and reduce platinum group metal loading to lower fuel cell cost.
- Design strategies to mitigate stack component degradation.
- Use quantitative performance
 degradation measurements to prepare
 ISO Hydrogen Fuel Product
 Specification Draft International
 Standard.
- Optimize water management properties.

Challenges

Reducing Cost and Improving Durability are Major Challenges


Projected 80 kW Fuel Cell System Cost Reduced to \$73/kW



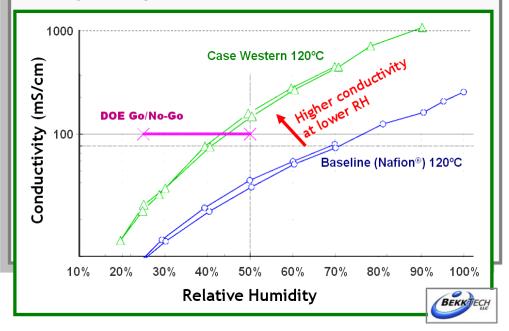
2009 Progress & Accomplishments

Membranes achieve high conductivity at high temperature

2D Support

3D Support

GINER HI-TEMP MEMBRANES

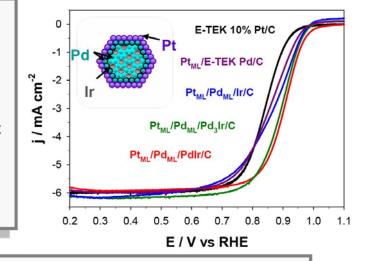

- Giner addressed membrane durability with dimensionally stabilized membrane demonstrated no x-y swelling
- Met DOE conductivity milestones at 30°C/80%RH and 120°C/50%RH;
 2x conductivity of Nafion[®] over the entire RH range

Benefits

- Provides mechanical stability and allows lower equivalent weight ionomers
- Results in better conductivity under low relative humidity

CASE WESTERN RESERVE UNIVERSITY HI-TEMP MEMBRANES

- Developed innovative rigid-rod structure that holds water at low RH
- Demonstrated highest conductivity (>140 S/cm) of all membrane projects under high-temperature, low-RH conditions

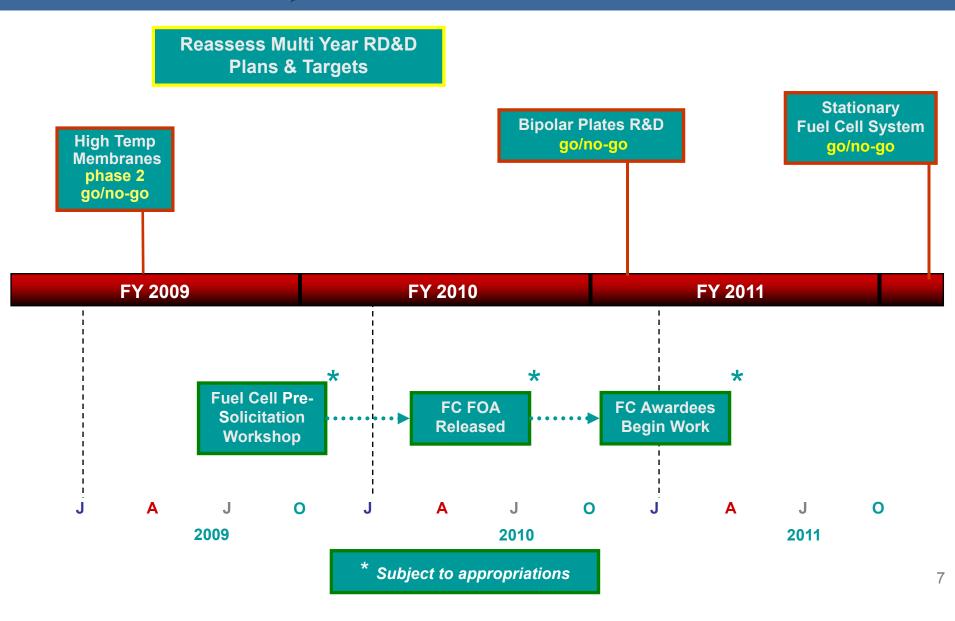


2009 Progress & Accomplishments

Catalysts and MEAs exhibit enhanced performance at lower PGM loading

BROOKHAVEN NATIONAL LAB CATALYSTS

- Demonstrated 2.5x activity of baseline Pt/C with Pd interlayer core-shell cathode catalysts (0.34 A/mg_{PGM}), approaching 2015 target of 0.44 A/mg_{Pt}
- Successful industrial scale-up of BNL's Pt_{ML}/Pd/C catalyst in gram quantities accomplished by Cabot


3M MEAs

- New baseline MEA has PGM loading of 0.15 mg_{PGM}/cm² and 0.18 g_{PGM}/kW, exceeding DOE 2015 targets (0.2 mg_{PGM}/cm² and 0.2 g_{PGM}/kW) in single cell testing
- Demonstrated improved durability, exceeding a DOE accelerated stress test protocol runtime by a factor of > 4
- Produced over 45,000 linear ft combined of NSTF substrate, coated catalyst, and catalyst coated membrane for process development, qualification and use

Summary

Major Milestones & Future Solicitation

For More Information

Fuel Cell Team

Dimitrios Papageorgopoulos Fuel Cell Team Leader 202-586-3388 dimitrios.papageorgopoulos@ee.doe.gov

Nancy Garland

National Lab R&D, International, Impurities 202-586-5673 nancy.garland@ee.doe.gov Donna Lee Ho Water Transport, Membranes Portable Power, APU 202-586-8000 donna.ho@ee.doe.gov

Kathi Epping Martin

FreedomCAR Tech Team, Stationary, Catalysts, Membranes 202-586-7425 kathi.epping@ee.doe.gov

Jason Marcinkoski

Cost Analyses, BOP, Membranes, Stationary 202-586-7466 jason.marcinkoski@ee.doe.gov

Argonne National Lab Technical Advisors: Tom Benjamin

John Kopasz Walt Podolski *Technical Support: Kevin McMurphy (Sentech) Ken Stroh (Sentech) Larry Blair (Consultant)* Golden Field Office Project Officers: Jesse Adams Greg Kleen Dave Peterson Reg Tyler Lea Yancey

Tuesday Fuel Cell Presentations

Start	Presenter	Organization	Title			
8:15	Dimitrios Papageorgopoulos	DOE	Fuel Cell Technologies			
	Membrane Research and Development					
8:30	James Fenton	U of Central Florida	Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program			
9:00	Cortney Mittelsteadt	Giner	Dimensionally Stable Membranes			
9:30	Serguei Lvov	Penn State	New Proton Conductive Composite Materials with Co-continuous Phases Using Functionalized and Crosslinkable VDF/CTFE Fluoropolymers			
10:00	Jimmy Mays	U of Tennessee	Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications			
10:30	Break					
11:00	James McGrath	Virginia Tech	Advanced Materials for Proton Exchange Membranes			
11:30	Dominic Gervasio	Arizona State	Protic Salt Polymer Membranes: High-Temperature Water-Free Proton- Conducting Membranes			
12:00	Stephen Creager	Clemson	Fluoroalkyl-phosphonic-acid-based proton conductors			
12:30	Lunch					
1:45	Morton Litt	Case Western Reserve University	Rigid Rod Polyelectrolytes: Effect on Physical Properties Frozen-in Free Volume: High Conductivity at Low RH			
2:15	Peter Pintauro	Vanderbilt University	NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells			
2:45	Ludwig Lipp	FuelCell Energy	High Temperature Membrane with Humidification-Independent Cluster Structure			
3:15	Andy Herring	Colorado School of Mines	Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes			
3:45	Break					
4:15	James Goldbach	Arkema	Improved, Low-Cost, Durable Fuel Cell Membranes			
4:45	Steven Hamrock	3M	Membranes and MEA's for Dry, Hot Operating Conditions			
5:15	John Kerr	LBNL	New Polyelectrolyte Materials for High Temperature Fuel Cells			

Wednesday Fuel Cell Presentations

Start	Presenter	Organization	Title			
8:30	Susanta Das	Kettering University	Novel PEM Membrane and Multiphase CFD Modeling of PEM Fuel Cells			
Catalysis						
9:00	Christina Johnston	LANL	Applied Science for Electrode Cost, Performance, and Durability			
9:30	Mark Debe	3M Company	Advanced Cathode Catalysts and Supports for PEM Fuel Cells			
10:00	Vivek Srinivasamurthi	UTC Power	Highly Dispersed Alloy Cathode Catalyst for Durability			
10:30	Break					
11:00	Yong Wang	PNNL	Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells			
11:30	Debbie Myers	ANL	Non-Platinum Bimetallic Cathode Electrocatalysts			
12:00	Piotr Zelenay	LANL	Advanced Cathode Catalysts			
12:30	Lunch					
	Impurities					
1:45	Fernando Garzon	LANL	Effects of Fuel and Air Impurities on PEM Fuel Cell Performance			
2:15	James Goodwin	Clemson University	Effects of Impurities on Fuel Cell Performance and Durability			
2:45	Trent Molter	University of CT	The Effects of Impurities on Fuel Cell Performance and Durability			
	Stationary					
3:15	Durai Swamy	Intelligent Energy	Development and Demonstration of a New-generation High Efficiency 1-10 kW Stationary PEM Fuel Cell System			
3:45	Break					
4:15	Eric Strayer	UTC Power	Stationary PEM Fuel Cell Power Plant Verification			
4:45	Richard Chartrand	Plug Power Inc.	Intergovernmental Stationary Fuel Cell System Demonstration			
5:15	Norman Bessette	Acumentrics Corp	Development of a Low Cost 10kW Tubular SOFC Power System – Phase II			

Thursday Fuel Cell Presentations

Start	Presenter	Organization	Title				
	System and Cost Analysis						
8:30	Rajesh Ahluwalia	ANL	Fuel Cell Systems Analysis				
9:00	Brian James	DTI	Mass Production Cost Estimation for Direct H2 PEMFC System for Automotive Applications				
9:30	Jayanti Sinha	TIAX	Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications				
1.10	Catalyst and MEA Characterization						
10:00	Karren More	ORNL	Microstructural Characterization Of PEM Fuel Cell MEAs				
10:30	Break						
1200	Platinum Group Metal Recycling						
11:00	Larry Shore	BASF	Platinum Group Metal Recycling Technology Development				
1 Carl	Water Management						
11:30	David Jacobson	NIST	Neutron Imaging Study of the Water Transport in Operating Fuel Cells				
12:00	Rod Borup	LANL	Water Transport Exploratory Studies				
12:30	Lunch						
1:45	Vernon Cole	CFD Research Corp	Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization				
2:15	Satish Kandlikar	Rochester Institute of Technology	Visualization of Fuel Cell Water Transport and Performance Characterization Under Freezing Conditions				
2:45	James Cross	Nuvera Fuel Cells	Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flowfield Fuel Cell Stack				
3:15	Zia Mirza	Honeywell	Development of Thermal and Water Management System for PEM Fuel Cells				
3:45	Break						
Other Stack Components							
4:15	Peter Tortorelli	ORNL	Nitrided Metallic Bipolar Plates				
4:45	Orest Adrianowycz	GrafTech International, Ltd.	Next Generation Bipolar Plates for Automotive PEM Fuel Cells				
5:15	Jason Parsons	UTC Fuel Cells	Low Cost, Durable Seals for PEM Fuel Cells				

Friday Fuel Cell Presentations

Start	Presenter	Organization	Title				
Solid Oxide Fuel Cells							
8:30	Daniel Norrick	Cummins	Diesel Fueled SOFC System for Class 7/Class 8 On-Highway Truck Auxiliary Power				
9:00	Gary Blake	Delphi	Solid Oxide Fuel Cell System Development for Auxiliary Power in Heavy Duty Vehicle Applications				
9:30	Hau Duong	Superprotonic, Inc.	Solid Acid Fuel Cell Stack for APU Applications				
10:00	Fred Mitlitsky	Bloom Energy Corp.	Low-cost Co-production of Hydrogen and Electricity				
10:30		Break					
11:00	Greg Tao	Material & Systems Research	Development of Novel Efficient Solid-Oxide Hybrid for Co-Generation of Hydrogen & Electricity				
11:30	Alan Ludwiszewski	Lilliputian Systems	Silicon Based Solid Oxide Fuel Cell for Portable Consumer Electronics				
12:00	Praveen Cheekatamarla	Nanodynamics Energy	Biogass Fueled Solid Oxide Fuel Cell Stack				