

Improved, Low-Cost, Durable Fuel Cell Membranes

2009 Hydrogen Program Annual Review

James Goldbach, David Mountz, Tao Zhang, Wensheng He, and Michel Fouré May 19, 2009

Project ID # FC_12_Goldbach

Grant ID: DE-FG36-07GO17008

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start Date: Sept. 30, 2007
- End Date: Sept. 30, 2010
- % Complete: 53%

Budget

- Total Funding
 - DOE: \$6,278k
 - Partners: \$1,569k
- Funding Received
 - FY2007: \$0
 - FY2008: \$2,369k
 - FY2009: \$360k

(as of 2/28/09)

Barriers Addressed

- A) Durability
- B) Cost

Partners

- Project Lead
 - Arkema Inc.
- Partners
 - Johnson Matthey Fuel Cells
 - Virginia Tech
 - Oak Ridge National Lab
 - University of Hawai'i
 - Hawai'i Natural Energy Institute(HNEI)

Objectives

- To develop a membrane capable of operating at 80°C at low relative humidity (25-50%).
- To develop a membrane capable of operating at temperatures up to 120°C and ultra-low relative humidity of inlet gases (< 1.5 kPa).
- To elucidate ionomer and membrane failure and degradation mechanisms via ex-situ and in-situ accelerated testing.
 - Develop mitigation strategies for any identified degradation mechanism.
- Use commercially-available matrix materials as low-cost approach

Overall Approach

- Polymer blend
 - Decouples conductivity from other requirements
 - Kynar[®] PVDF
 - Chemical and electrochemical stability
 - Mechanical strength
 - Polyelectrolyte
 - H⁺ conduction and water uptake
- Robust blending process
 - Compatible with various polyelectrolytes
 - Morphology and physical property control
- Lower cost approach compared to PFSA
 - Kynar[®] PVDF commercial product
 - Polyelectrolyte hydrocarbon based
- M43 highly sulfonated polyelectrolyte
 - Maximize conductivity at high RH

Milestones – Low RH Membranes

Milestone	Progress Note	Comments
Improve low RH performance at 80°C	M70 membranes show improved <i>ex</i> - and <i>in-situ</i> performance	Validated disulfonated monomer approach
Produce pilot quantities of M70	Scale-up in progress	Pilot production planned for 3Q09
Improve thermal stability to 120°C	Validated BPSH blending with PVDF	Narrow processing window with BPSH-60; Move to BPSH-100
Improve low RH performance at 120°C	Validate BPSH-100 blending and stability	TBD

Background – Arkema Membranes

M4x Series –polyelectrolyte /w monosulfonated monomer

- Proton conductivity ~ 130 mS/cm
- Mechanical properties > PFSA
- <10% creep @ 120 °C, 40% RH</p>
- OCV-Hold testing > 1000h (90°C, 30%RH, O₂, no backpressure)
- RH cycling > 50,000 cycles (DOE protocol)

 Insufficient low RH performance <2mS/cm *ex-situ* conductivity @ 50% RH MEA operation to ~65% RH

Low RH Membranes: Approach

1) New polyelectrolyte blend membranes

- Alternate sulfonated monomer (drop-in replacement): <u>M60/61 membranes</u>
- Multiacid-functional polyelectrolytes (novel syntheses): M70 membrane
- Highly sulfonated BPSH polyelectrolytes (J. McGrath)

2) Control morphology of Kynar[®] blends

- Understand/baseline blend morphology
- Understand/control morphology ← → bulk property relationship
 - Extremely complex nano-morphology <u>under investigation</u>

M7x – Series Membranes

- Disulfonated monomer-containing polyelectrolyte
- Membrane EW ~ 400 g/mol H⁺

M70 Polyelectrolyte Hydrolytic Stability

Polyelectrolyte only hydrolysis test

- Initial screening test for all new polyelectrolytes
- 5.0 wt.-% polyelectrolyte solution in acidic H₂O, 80 °C, sealed tube
- Periodically remove samples for ion chromatography analysis

M70 polyelectrolyte

- Nearly unmeasurable levels of hydrolysis
- 0.036 wt.-% S loss as SO₄²⁻ over 500h
- Would take ~14,000h to lose just 1.0% of sulfonate groups

M70 Blending Optimization

Process 'A'

Process 'B'

Process 'C'

55±9 mS/cm

<mark>3μm</mark>*

63±3 mS/cm

186±17 mS/cm

• Membrane transparency \rightarrow finer morphology \rightarrow higher conductivity

*Conductivities measured @ 70 °C, liquid H₂O

M70 Conductivity vs. RH – Initial Membranes

Unoptimized membranes: Order-of-magnitude increase vs. M41

Continued optimization underway

M70 Summary To Date

Novel monomer and polyelectrolyte synthesized

- Initial scale up achieved >500g scale
- Initial blending investigation completed
 - Successfully produced blended membranes
 - Encouraging ex-situ low RH improvement
- Validates multi-acid approach for low RH performance
- Process optimization underway
 - Potential for further improvement
- Synthesis and process readily scalable to pilot
- Begin *in-situ* performance and durability testing

BPSH/Kynar[®] Blend Membranes - Collaborative effort – J. McGrath (VT)

BPSH Copolymer Blends

- Rationale
 - >80°C-stable aromatic-type polyelectrolytes
 - Use highly-sulfonated BPSH polyelectrolytes
 - Potential to improve low RH conductivity
 - Improve mechanical properties / swelling of BPSH materials
 - Important for BPSH-60 and higher sulfonate content
- Challenges
 - PE leaching vs. SO₃H content
 - BPS / Kynar[®] compatibility vs. SO₃H content
 - BPS vs. Kynar[®] ratio
 - Effect on proton conductivity
 - Effect on mechanical properties

BPSH / Kynar[®] Blends

Project Plan	Completed?
 Test blending of BPS-60 with Kynar[®] 	\checkmark
 Random copolymer (BPS) synthesis (VT) Vary blending process parameters Maximize compatibility (small domain sizes) Test proton conductivity and mechanical properties 	\mathbf{V}
 Test blending of BPS-100 with Kynar® Random copolymer (BPS) synthesis (VT) Vary blending process parameters Maximize compatibility (small domain sizes) Test proton conductivity and mechanical properties 	in progress ↓
 Test blending of BPS-100 (cross-linkable) with Kyn Random copolymer (BPS) synthesis (VT) Use blending parameters from previous investigation Investigate cross-linking reaction effect on leaching Test proton conductivity and mechanical properties 	ar [®] in progress

ARKema

Kynar [®] /BPSH60 wt ratio	Theoretical EW (mg.meq-1)
0/100	469
10/90	521
20/80	587
40/60	782
57/43	1091

M41 Membrane EW~ 800 mg.meq⁻¹ M41 polyelectrolyte EW ~ 250 mg.meq⁻¹

BPSH Copolymer Swelling

- Solubility vs. swelling
- Mitigate high swelling using Kynar[®] matrix
- Control SO₃H content to avoid leaching
- Blend with PVDF for added mechanical properties

McGrath, J.E., et.al.; Chem. Rev., 2004, 104, 4587-4612.

Blending BPSH-60 with Kynar®

- Membrane solution gelling required process optimization
 - Moisture level in BPSH polyelectrolytes caused some uncertainty
 - Problem addressed by rigorously drying the BPSH before use.
- Narrow window for processing to generate well-blended membranes without gellation of the formulations.

Kynar [®] /BPSH-60 wt ratio	Process	Membrane Description
40/60	A	Opaque
40/60	В	Transparent
40/60	С	Formulation gelled

BPSH-60/Kynar® Blend Membranes - SEM

Kynar[®]/BPSH-60 wt ratio 60/40 Process A

Kynar[®]/BPSH-60 wt ratio 60/40 Process B

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

BPSH-60 / Kynar® Blend Membrane TEM

S map

F map

BPSH-60/Kynar[®] Membranes – Water Uptake

- Water uptake increases substantially with higher loading of BPSH-60
- Swelling greatly reduced with Kynar[®] blending

BPSH-60/Kynar[®] Membranes - Conductivity

BPSH-100 Copolymer Blends

Kynar[®] / BPSH-100 Blends

- Rationale: Increase sulfonate content to increase low RH conductivity
- Main issue: BPSH-100 is water-soluble and must be immobilized
- BPSH-100
 - 100% of possible disulfonated monomer
 - 50 mol.-% of overall monomer units

BPSH-100 Cross-linkable

Paul, M., McGrath, J.E., et.al.; Polymer, 49, 2008, 2243-2252.

BPSH Blending Conclusions / Ongoing Work

• BPS-60/Kynar[®] narrow processing window

- Moderate proton conductivity
- Interesting swelling / mechanical characteristics
- Observed hole formation upon boiling water treatment
 - Likely due to BPS-60 leaching

Transition to a cross-linkable, higher conductivity system

- BPSH-100 cross-linkable
- Improve processing window
- Reduce hole formation from leaching

Overall Summary

- M41 shows superior durability in accelerated in-situ testing
- M41 MEAs shown to operate down to 65% RH (inlet)
- Disulfonated monomer approach validated
- Initial M70 membranes
 - Order-of-magnitude increase in conductivity vs. M43
 - Continuing membrane optimization
 - Continuing membrane ex-situ performance testing
 - Starting MEA *in-situ* performance and durability testing
- BPSH-60 polyelectrolytes shown to blend with Kynar®
- BPSH/PVDF blends show marked reduction in swelling
- Transitioning to BPSH-100 to improve low RH conductivity

Future Work

M70 Membranes

- Continuing membrane optimization
- Continuing membrane ex- and in-situ durability and performance testing
- Planned pilot production run
- MEA cycling durability testing

BPSH/Kynar[®] Blend membranes

- Optimize BPSH-100 (cross-linkable) blending with PVDF
- Validate efficient BPSH-100 cross-linking
- BPSH-100 / Kynar[®] blend ex- and in-situ durability and performance testing
- Develop novel monomers/polyelectrolytes with even lower EW
- Polyelectrolyte / PVDF Blend Morphology
 - Continue investigation of complex blend morphology (M43)
 - Correlate morphology changes to performance

Acknowledgements

US Department of Energy

- Nancy Garland
- Kathi Epping
- Reg Tyler
- Tom Benjamin
- Johnson Matthey Fuel Cells
 - Rachel O'Malley, Graham Hards, Jonathan Sharman
- Oak Ridge National Laboratory
 - Karren More, Harry Meyer, Shawn Reeves

University of Hawai'i – Hawai'i Natural Energy Institute

- Rick Rocheleau, Keith Bethune
- Virginia Tech
 - Prof. Jim McGrath
- Arkema Fuel Cells Team

Supplemental Slides

TEM – M43 Membranes

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

15% Polyelectrolyte

35% Polyelectrolyte

ARKemp

Very complex morphology in blend membranes

 Kynar[®] crystallites, polyelectrolyte domains, very tiny structures
 Ongoing work using SEM, TEM, STEM, AFM and X-Ray Scattering
 Determining baseline structure in M43, then adjust process variables
 Relate process changes to morphology changes to membrane performance

M43 Initial Results

M43 OCV Durability

M43 RH Cycling Durability

M5x Membrane Generation

Polyelectrolyte with phosphonic acid groups

M41: Highly sulfonated polyelectrolyte

• M51

¼ of sulfonates replaced with phosphonate

• M52

½ of sulfonates replaced with phosphonate

• M53

- ³⁄₄ of sulfonates replaced with phosphonate
- Reoptimized PVDF blending parameters
- Produced new membranes (lab-scale)
- Conductivity and MEA performance poor

Approach abandoned in lieu of M70 and BPSH work

