Highly Dispersed Alloy Catalyst for Durability

Vivek S. Murthi

May 20, 2009

Project ID: fc_18_murthi

Information included in this presentation is not proprietary or confidential unless otherwise specified

Overview

<u>Timeline</u>

- Start May 1, 2007
- End April 30, 2010
- 66% Complete

<u>Budget</u>

- Total project funding
 - DOE share \$6.278M
 - Cost share \$2.860M
- DOE Funding for FY08
 - \$1,163 K
- DOE Funding received in FY09
 - \$2,140 K

Barriers

- A. Performance
 - Increase catalyst activity

B. Cost

- Reduce PGM loading
- C. Durability
 - Increase cyclic durability

Partners

Johnson Matthey Fuel Cells

JMCC Johnson Matthey Fuel Cells

Texas A&M University

Brookhaven National Laboratory

Brookhaven National Laboratory

Office of Science / U.S. Dept. of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Program Objectives

DOE Hydrogen Program

Develop structurally and compositionally advanced cathode catalyst that will meet DOE 2010 targets for performance and durability

Characteristics	Current Status	DOE 2010 Target	DOE 2015 Target
Pt group metal (total content) [g/kW]	0.80	0.3	0.2
Pt group metal (total loading) [mg/cm ²]	0.64 [‡]	0.3	0.2
Mass activity @ 900mV [A/mg _{PGM}]	0.28	0.44	0.44
Specific activity @ 900mV [mA/cm ²]	0.55	0.72	0.72
Cyclic durability @ <80°C / <u>></u> 80°C [h]	TBD	5000/2000	5000/5000
ECA Loss* [%]	30	<40	<40
Cost [\$/kW]	~38†	5	3

* Durability data measured after 30K cycles on UTC defined accelerated test protocol.

[‡]Anode/Cathode loading – 0.4/0.24 mg/cm² (PGM).

[†] 5 year average PGM price \$ 47.67/g (Pt = \$1166.22/Troy Oz; Ir = \$ 316.58/troy oz)

Technical Contributors

DOE Hydrogen Program

UTC Power Corporation:

Vivek S. Murthi, Elise Izzo, Carmen Perez-Acosta, Wu Bi, Sathya Motupally, Tom Jarvi

Johnson Matthey Fuel Cells:

Sarah Ball, Rachel O'Malley, Sarah Hudson, Brian Theobald, Dave Thompsett, Graham Hards

Brookhaven National Lab:

Wei-Ping Zhou, Miomir Vukmirovic, Jia Wang, Dong Su, Yimei Zhu, Radoslav Adzic

Texas A&M University:

Perla B. Balbuena, Gustavo Ramirez-Caballero, Yuguang Ma, Rafael Callejas-Tovar, Julibeth Martinez de la Hoz

A United Technologies Company

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overall Strategy

A United Technologies Company

2010 Target Q1, '08 Q3, '08 Structural and PtlrCo PtIrM scale-5000 composition **PtIrM** up and optimization **PtIrM** MEA optimization **Cyclic Durability** shell synnesis Future core Shell thickness Dimitation Core element Q3, Q1, '08 0.88 A/mg_{Pt} 0.44 A/mg_{Pt} 0.0 A/mg_{Pt} Mass activity **UTC Power**

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Milestones

Month/Year	Milestone or Go/No-Go Decision	
July 2008	Milestone: Synthesis of large scale batch (30 g) of Ir, Pd_3Co and Pd_3Fe cores	
November 2008	Milestone: Synthesis of scaled up (5 g) batch of core/shell catalyst formulations Milestone: Bench scale dispersed alloy catalyst formulation down selected Go/No-Go decision: Down-selection of dispersed alloy catalyst (complete)	
May 2009	Go/No-Go decision: Down-selection of new durable carbon Milestone: Scale-up of down-selected dispersed catalyst	
August 2009	Go/No-Go decision: Down-selection of core/shell catalyst	
September 2009	Go/No-Go decision: UEA optimization of dispersed catalyst for single cell durability test	

Dispersed Catalyst Down Select Criteria

Rank	1	2	3	4	5	Weight factor
Mass Activity (A/mg _{Pt})	≤ 0.2	0.2 – 0.3	0.3 – 0.4	0.4 - 0.45	≥ 0.5	0.4
Durability (% ECA loss after 30K cycles)	≥ 40 %	25 - 40 %	10 – 25 %	5 – 10 %	≤ 5%	0.3
Durability (% MA loss after 30K cycles)	≥ 40 %	25 - 40 %	10 – 25 %	5 – 10 %	≤ 5%	0.2
PGM Loading (wt% of Non-Pt PGM)	≥ 15 %	10 – 15 %	5 – 10 %	2.5 – 5 %	≤ 2.5 %	0.1

Overall Score = Σ (Weight factor * Rank) [†]

† Go-No Go decision made after considering the individual ratings

	Mass Activity (RDE) (A/mgPt)	Durability (% ECA loss after 20 K cycles)	Durability (% MA loss after 20 K cycles)	PGM Loading (wt% of Non-Pt PGM)	Score
DOE 48 – Pt ₂ lr _{0.5} Co _{1.5}	0.39	1 %	48 %	6 %	3.2
DOE 52 – Pt ₂ IrCr	0.45	9 %	49 %	11 %	3.2

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Modeling Pt₂IrCr Activity and Stability

 $\Delta U(V)$ for the reaction Pt \rightarrow Pt⁺² + 2e⁻ on the alloy surface compared to that on pure Pt (111)

For the non-segregated surface, the potential shift is positive, indicating that the Pt atoms

System	$\Delta U(\mathbf{V})$
Pt	0
Pt ₂ IrCr-Pt ₂ IrCr-Pt ₂ IrCr	0.45
Pt ₄ -PtIrCr ₂ -PtIr ₂ Cr	0.02
Pt ₃ Cr-Pt ₃ Cr-Ir ₃ Cr	0.40

Thermodynamic stability of these surfaces (segregation trend under adsorbed oxygen) follows the order: Pt₃Cr > Pt₂IrCr > Pt-skin

driving forces for surface segregation:

large atomic size low surface energy small heat of alloy formation

- d-band center shows Pt₂IrCr Alloys less reactive than Pt₃Cr alloys
- Potential shift for Pt → Pt²⁺ shows that Pt₂IrCr more stable

on that surface have less tendency to dissolve than on pure Pt(|||)

d-band center for surface Pt atoms: -2.30eV

Segregated Surface Pt₄-PtIrCr₂-PtIr₂Cr

d-band center for Surface Pt atoms: -2.31eV

Technical Accomplishments – Subscale MEA

A United Technologies Company

UTC Accelerated Protocol

0.4 – 0.95 V; 10s:10s; Sq. wave 30,000 cycles; 4% H2 / 100% N2 150 kPa (absolute); 80°C; 100% RH (anode and cathode)

- Ir prevents transition metal leaching and Pt dissolution
- Cr has added benefits in MEA
 - low Fluoride Emission Rates
 - higher oxide stability

Pt₂IrCr gave best durability in both RDE and MEA cycling

Down-selected PtIrM/C Alloys

<u>30% Pt₆IrCo₇</u> (DOE 59-1)

- Higher initial Mass Activity
- Stable ECA ~70 m²/g_{Pt}
- Currently optimizing heat treatment impact for trade-off of performance and durability

This presentation does not contain any proprietary, confidential, or otherwise restricted information

HIGHLY DISPERSED ALLOY CATALYST JM Scale-up: 30% Pt₂Ir_{0.5}Co_{1.5} and 30% Pt₂IrCr ^{DE Hydrogen Program}

A United Technologies Company

Pd₃Co/Pt_{MI} - JM Scale-up

0.25 monolayer of oxygen

Syste	em	$\mu_{Pt}(eV)$	$\Delta \mu ({\rm eV})$	$\Delta U(\mathbf{V})$
Pt (0 I	ML)	-6.98	-0.72	0.36
Pt (0.25	iΜL)*	-6.26	0	0
Pt(shell)-F	d(core)	-6.42	-0.16	0.08
Pt(shell)-	CVT1	-6.46	-0.20	0.10
Pd ₃ Co (core)	CVT2	-6.46	-0.20	0.10
Pt(shell)-	CVT1	-4.88	1.38	-0.69
Pd ₃ Fe (core)	CVT2	-6.49	-0.23	0.12

initia

0.2

A United Technologies Company

j /mA cm⁻²

-2

-4

-6

0.0

RHE

ŝ ≧ Core

In the presence of oxygen Pt becomes less stable compared with in vacuum; Pd and Pd₃Co cores can increase Pt stability

DOE Hydrogen Program

Time (s)

0.4

0.6

E/V vs. RHE

0.1 M HCIO.

0.8

10 mV/s; 25 °C: 1600 rpm

1.0

$Pd_{3}Co/Pt_{ML}$ - Fundamentals

Position(nm)

1. HAADF signal indicates the size of nanoparticles; Pd EELS signal shows the composition of Pd

DOE Hydrogen Program

- 2. Core Shell structure resolved and thickness of shell measured
- 1. HAADF and EELS line scan results prove the core-shell structure of Pt on Pd
- Shell thickness is not uniform; may vary between 0.5 – 0.8 nm

After potential cycling

- 1. Decrease in particle size of Pd₃Co core
- 2. Particle density (TEM) decreases significantly
- 3. Pt layer seems to grow preferentially on one side of the particles

Pd₃Co/Pt_{2ML} Core/Shell Stability

DOE Hydrogen Program

Voltammetry curves for $Pt_{2ML}/Pd_3Co/C$ in 0.1 M HClO4 after potential cycles (0.6 – 0.95 V square wave with 30 sec pulse); RT

ORR curves for $Pt_{2ML}/Pd_3Co/C$ in 0.1 M HClO4 at 1600rpm after potential cycling. Scan rate: 10 mV/s; RT

Potential shift with different Pt shell thickness – in vacuum

 $\Delta U(V)$

	1 layer	2 layers	3 layers
Pt(shell)-Co(core)	-0.54	-0.56	-1.95
Pt(shell)-Fe(core)	-1.10	-1.05	-2.79
Pt(shell)-Pd(core)	0.20	0.02	0.02
Pt(shell)- Pd ₃ Co(core)	0.21	0.06	0.06
Pt(shell)- Pd ₃ Fe(core)	-0.51	0.08	0.07

In vacuum

Monolayer Pt leads to highest stability for Pd and Pd_3Co core

- Pt_{2ML}/Pd₃Co synthesized with mediated growth method (100 mg JM batch) shows improved stability
- The total surface area loss was ~ 40% after 13,000 cycles while the ORR specific activity at 0.9 V was increased by ~ 80%

- All core shell catalysts show enhancement over Pt only
- Best mass activity Pt_{ML}/Ir core shell

ower

A United Technologies Company

Pt_{ML}/Pd₃Co and Pt_{ML}/Pd₃Fe show equivalent performance

Future Work

DOE Hydrogen Program

□ FY 2009

- Dispersed Alloy Catalyst
 - Fundamental study on heat treatment process to improve activity and durability
 - Fundamental effect of Ir-containing alloys on durability benefit

- Core/Shell Catalyst

- Explore new core materials based on modeling results
- · New chemistries to obtain uniform Pt coating with improved mass activity

Carbon support

- Liquid cell corrosion testing to down-select more durable carbon support
- Optimize synthesis to maximize activity

G FY 2010

Dispersed Alloy Catalyst

- Validate selected catalysts in a single-cell fuel cell under new DOE protocol
- Stack verification of selected catalysts

Core/Shell Catalyst

- Down-select, scale-up and optimize MEA layer
- Full size (400cm²) single cell verification

Carbon support

Verification of down-selected carbon in sub-scale MEA

Project Summary

- **<u>Relevance</u>**: Work to develop a more active and durable catalyst that meets and surpasses the DOE 2010 targets for performance and durability in real-life conditions in a 20-cell stack test.
- <u>Approach:</u> Complete fundamental modeling and experimental studies that elucidate how the structure of a catalyst and its support behave during synthesis, processing and operation.
- <u>Technical Accomplishments and Progress</u>: Demonstrated catalyst mass activities that surpass the DOE 2010 target for dispersed catalysts (≥ 0.7 A/mg_{PGM}) in RDE testing. Reproduced mass activities of almost 0.3 A/mg_{PGM} for our down-selected catalyst in both RDE and subscale MEA testing (3X a standard Pt only catalyst). Scaled-up a core-shell catalyst to a 5g batch. Began work on optimizing the catalyst layer for full-scale MEA testing.
- <u>Technology Transfer/Collaborations:</u> Active partnerships with Johnson Matthey Fuel Cells, Brookhaven National Laboratory, and Texas A&M University with the ultimate goal to develop a more active and durable catalyst through team meetings, presentations and publications.
- Proposed Future Research: Continue to experimentally verify the modeling data for core-shell stability and activity benefits of dispersed alloys. Use modeling to investigate stable non-PGM cores for core-shell catalyst systems.

Supplemental Slides

Cycling Protocol and Durability Modeling

	2007 DOE Protocol	UTC Accelerated Protocol [‡]	2008 Modified Protocol #
Cycle	30 s at 0.7 V; 30 s at 0.9 V (60 s/cycle)	10 s at 0.4; 10 s at 0.95 V (20 s /cycle)	0.6 – 1.0 V at 50 mV/s (16 s /cycle)
Wave Shape	Square	Square	Triangle
Number	30,000	30,000	30,000
Fuel/Oxidant	100% H ₂ / 100% N ₂	4% $\rm H_2$ in $\rm N_2$ / 100% $\rm N_2$	100% H ₂ / 100% N ₂
Pressure Temperature and % RH	150 kPa (absolute) 80°C 100% (anode and cathode)	150 kPa (absolute) 80°C 100% (anode and cathode)	100 kPa (absolute) 80°C 100% (anode and cathode)

[‡] Cycling below 0.9V leads to reduced Pt dissolution

DOE Hydrogen Program

2008 DOE Accelerated Testing Protocol – more aggressive

Pt dissolution rate depends on the initial particle size and the potential window of cycling

A United Technologies Company