Project ID: FC_19_Wang

Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells

Yong Wang, Jun Liu, Vilayanur Viswanathan, Yuehe Lin, Rong Kou, Yuyan Shao (Pacific Northwest National Laboratory)

Sheng Dai (Oak Ridge National Laboratory)

Stephen Campbell (AFCC-Automotive Fuel Cell Cooperation)

Jingguang Chen (University of Delaware)

Brian Willis (University of Connecticut)

May 18, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Jan 2007
- Project end date: Dec 2010
- Percent complete: 55%

Budget

- Total project funding
 - DOE share: \$4,234K
 - Contractor share: \$255K
- Funding received in FY07
 - \$1,241K (federal, requested)
 - \$820K (federal, approved)
 - \$72K (cost share)
- Funding received in FY08
 - \$1,300K (federal, requested)
 - \$1,400K (federal, approved)
 - \$72K (cost share)
- Funding in FY09
 - \$1,095K (federal, requested)

Barriers

- A. Durability of cathode catalyst supports
- C. Performance of cathode supported catalyst

Partners

- AFCC– guidance on fuel cell testing
- Oak Ridge National Laboratory mesoporous carbon supports
- University of Delaware and University of Connecticut – Model materials
- Pacific Northwest National Laboratory
 - Synthesis and test of cathode/fuel cell
 - project management

Objectives

Overall	Develop and evaluate new classes of alternative and durable high-performance cathode supports
2007	Provide fundamental understanding of Pt/support model systems
	Synthesize high surface area durable cathode supports
	Select a potential support with better stability than commercial carbon black support
2008	Identify lead cathode compositions with better durability than carbon black supported Pt cathode
2009	Identify compositions with 2X better stability than carbon black supported catalyst for cell demonstration.
2010	Demonstrate durability under accelerated test protocols that meet DOE lifetime criteria

Milestones, Schedule and Go/no-go Decisions

		Task Completion Date				
Task Number	Project Milestones	Original Planned	Revised Plan	Actual	Percent Complete	Progress Notes
1	Better stability of model Pt/WC	09/30/07	09/30/07	9/30/07	100%	completed
2	High surface area WC and CMO	09/30/07	12/31/07	12/31/07	100%	completed
2	Down select carbon supports	09/30/07	12/31/07	1/31/09	100%	completed ¹
2&3	Identify lead compositions	09/30/08	12/31/08	1/31/09	100%	completed
2&3	Identify compositions for cell test	09/30/09	12/31/09		30%	On track
3	Demonstrate target durability	09/30/10	12/31/10		20%	On track

¹ delayed due to both the reduced budget in FY07 and a longer time to develop an appropriate test protocol

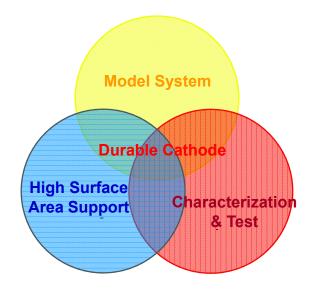
Go/no-go decisions:

Year 1: Decided to use mesoporous carbon as both scaffold and as template for CMO synthesis

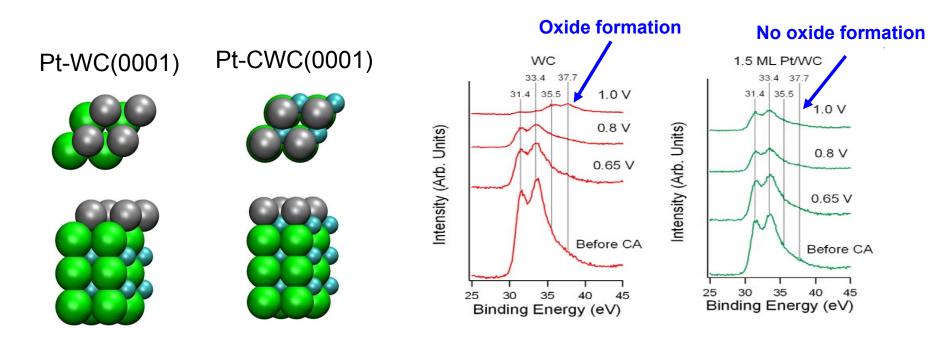
Year 2: Continue effort if stable compositions can be identified

Year 3: Move forward with cell test if durable supported catalyst can be identified

Approach - Overall

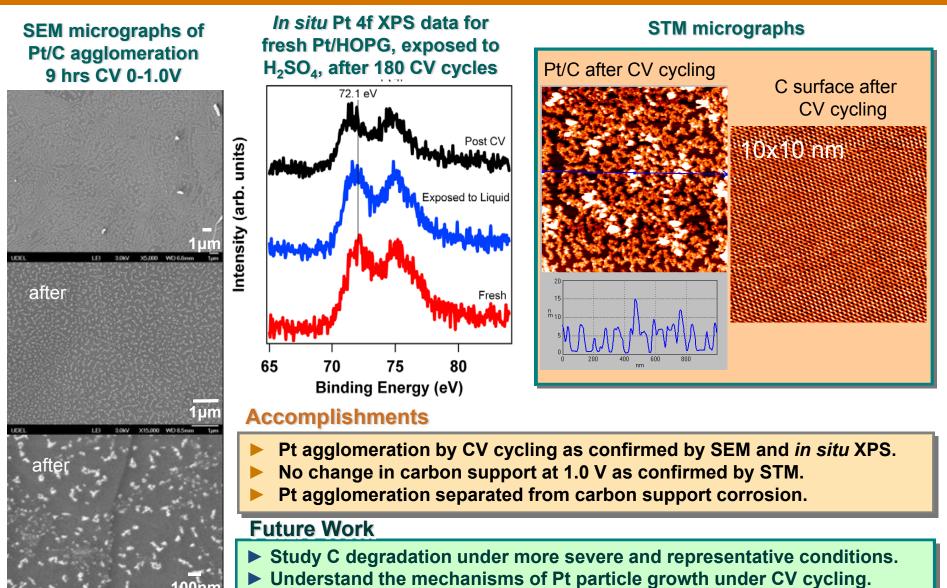

- Develop and evaluate new classes of alternative and durable cathode supports using graphitized carbons as scaffolds and protect carbon surface with
 - Tungsten carbide (WC)
 - Oxycarbides
 - Conductive metal oxides (ITO)
 - SnO₂
 - TiO₂

Enhance Pt dispersion and stability on these new classes of cathode supports


Approach – Specific Tasks

- Fundamental understanding of model systems with well defined structures and compositions to guide the design of advanced and durable cathode materials.
- Synthesis of high surface area cathode supports with improved durability using carbon scaffolds.
- Characterization and electrochemical evaluation of improved cathode supports.

Technical Accomplishment: Model System Guidance from DFT Modeling and Experimental Studies



WC and VC are potential supports

- Pt-WC(0001) and Pt-VC(111) should have better ORR activity than Pt/C.
- Pt/WC(0001) and Pt/VC(111) are predicted to be stable in oxygen environment
- XPS studies showed that the deposition of Pt on WC improves the stability of WC at high potential limit

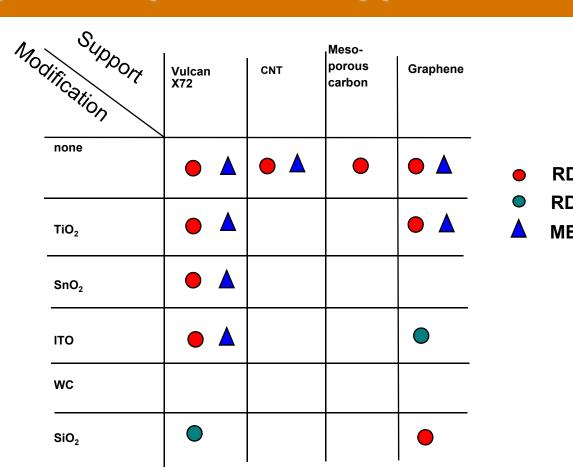
Technical Accomplishment: Model System Characterization Using SEM, XPS, STM, & CV Cycling

Evaluate the effects of WC, VC, and functionalized/roughed C surfaces

High Surface Area Cathode Materials

Development of novel carbon supports

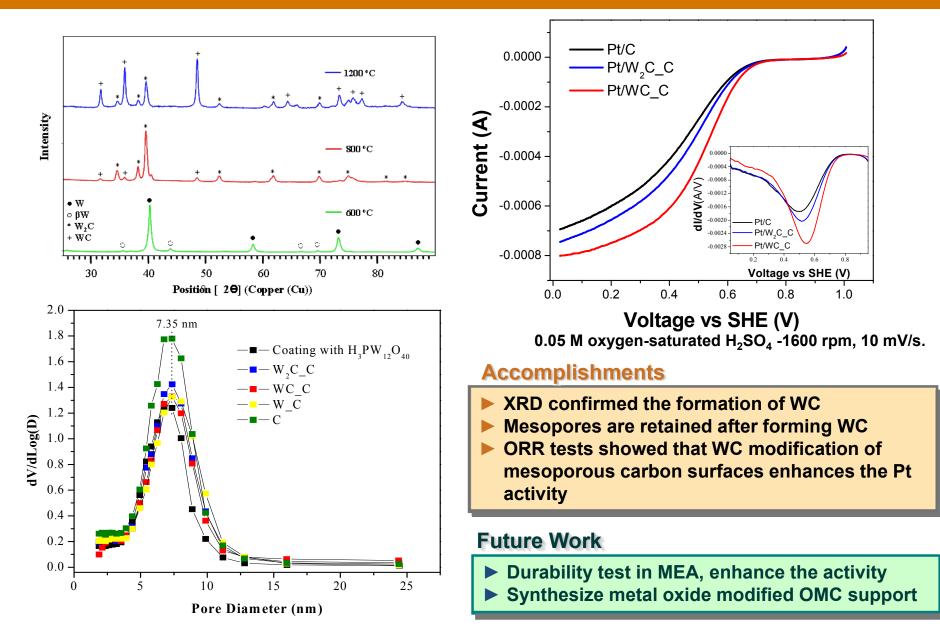
- Ordered mesoporous carbon (OMC)
- Graphene


Dispersion and activation of Pt

- Substrates: XC-72, carbon nanotubes (CNT), graphene and OMC
- Loading method : incipient wetness approach
- Activation
 - Reduction in H₂ at 300°C,500°C, or
 - Reduction with ethylene glycol
- Metal oxide modification of XC-72
 - SnO₂, In₂O₃, TiO₂ etc.

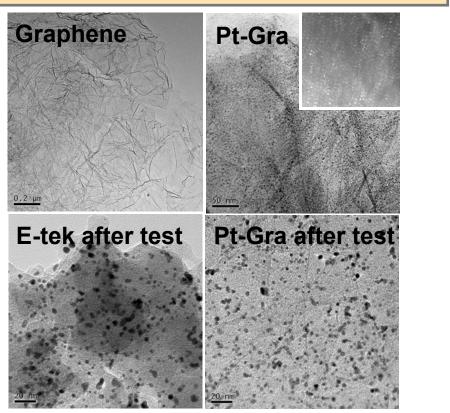
Synthesis of high surface area ITO and WC substrates

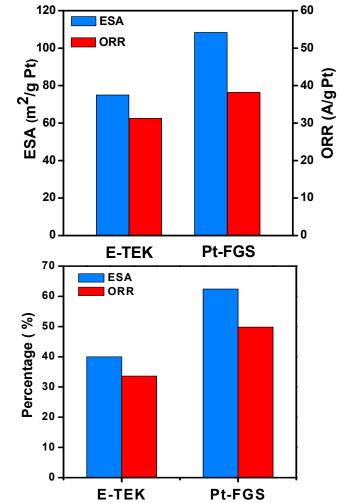
Summary of Samples and Support Modifications



- RDE test complete
- RDE test in progress
- MEA test complete

RDE test: initial screening for activity and stability **MEA test:** detailed durability testing including CO₂ evolutions and charge during potential hold



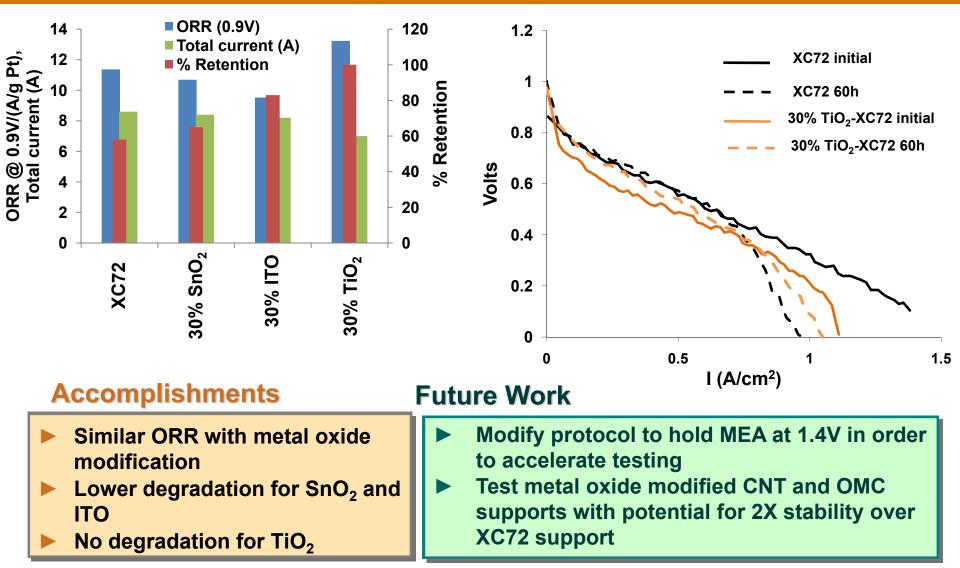

Technical Accomplishment WC Supported on Mesoporous Carbon

Technical Accomplishments: Pt on Graphene

Advantages of graphene: bridging to the model system, high surface area (600~900 m2/g), high conductivity, unique graphitized basal plane structure, amenable to large scale production.

Small Pt nanoparticles uniformly loaded on graphene; size of Pt on graphene is smaller than on E-tek after test, indicating less agglomeration.

Pt on graphene shows higher activity and durability - 5000 CV(0.6-1.1V)


MEA Testing - Comparison of Long-term Stability of 20% Pt on XC72 and CNT Supports (1.2V hold)

- XC72 support has loss especially at high current density
- CNT support very stable, likely due to different structures and surface properties

MEA Testing – Activity and Stability of 20% Pt on MOx Modified XC72 (1.2V Hold)

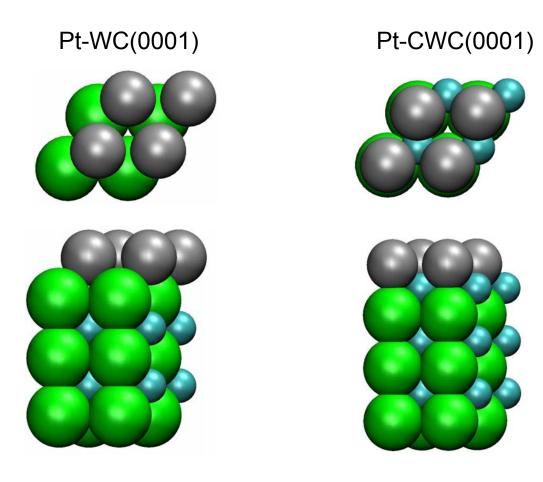
Technical Accomplishments and Future Work

Accomplishments

- Model system studies demonstrated stable carbon surface at 1.0 V, and separated Pt agglomeration from carbon corrosion.
- DFT calculations guide the selection of materials with better durability and activity, e.g., WC and VC.
- Modification of ordered mesoporous carbon (OMC) with WC increased activity.
- Carbon nanotubes (CNT) showed higher stability and activity than XC72.
- Modification of carbon supports with metal oxides, e.g., graphene and XC72 with TiO₂, showed improved stability.

Future Work

Study C degradation and evaluate and Pt-support interactions of model systems under more severe and representative conditions (1.2 and 1.4 V).


Pacific Nort

- Accelerate MEA testing by modifying the protocol, e.g., holding at 1.4V.
- Demonstrate 2X stability over XC72 support, e.g., modifying CNT with metal oxides.

Additional Slides

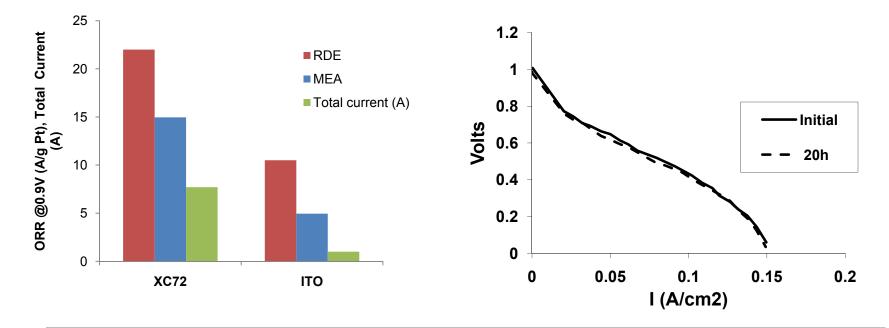
DFT Structures of Carbide Supported Pt

Calculation Methods: Vienna Ab-intio Simulations Package (VASP) 3x3x1 MP K-point mesh 2x2 unit cell

ORR Activity Predicted Based on Oxygen Binding Energy on Pt-WC(0001), Pt/VC(111) and Pt-Ni-Pt(111)

Surface 0	O Binding E (kcal/mol)
Pt(111) -	-39
Pt-Ni-Pt(111) -	-19
Ni-Pt-Pt(111) -	-118
Pt-WC(0001) -	-24
W-Pt-WC(0001) -	-202
Pt-CWC(0001) -	-74
W-Pt-CWC(0001) -	-156
VC(111) -	-193
Pt-VC(111) -	-15
V-Pt-VC(111) -	-237

Based on values of oxygen binding energy, the Pt-WC(0001) and Pt-VC(111) should have comparable ORR activity as the Pt-Ni-Pt(111) (Pt-skin) catalyst


Pt/WC(0001) and Pt/VC(111) Predicted to Be Stable in Oxygen Environment

Alloy	ΔE _{Vacuum} (kcal/mol)	$\Delta E_{0.5 \text{ ML O}}$ (kcal/mol)
Pt-Ni-Pt(111)	13	-12
Pt-Ni-CWC(0001)	25	6
Pt-Ni-WC(0001)	4	-18
Pt-WC(0001)	64	20
Pt-CWC(0001)	46	25
Pt-V(110)	20	-36
Pt-VC(111)	86	30
Pt-VN(111)	N/A	
Pt-VP(0001)	34	
Pt-VB2(0001)	70	

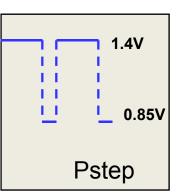
Positive value of $\Delta E_{0.5 \text{ ML O}}$ indicates that the surface structure is stable in the presence of oxygen. Both Pt-WC(0001) and Pt-VC(111) should have higher stability than the Pt-Ni-Pt(111) (Pt-skin) catalyst

Pacific Northwes

Carbon Free Support - 20% Pt on ITO

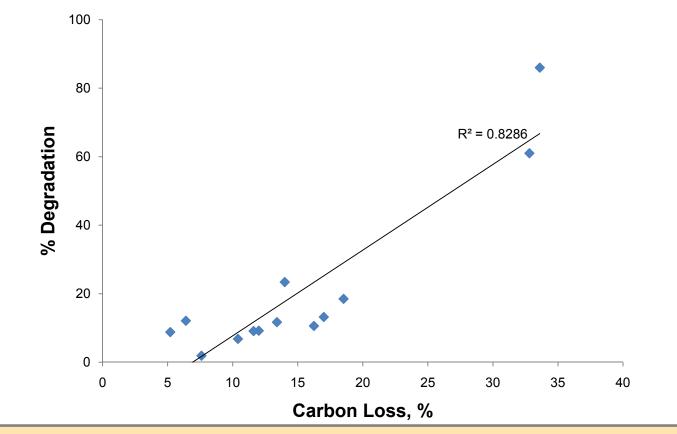
Carbon free ITO support shows reasonable activity with no degradation after 20 hours. This provides the potential of controlling ITO/carbon ratio to optimize conductivity, activity, performance and durability.

Low activity was due to low surface area of ITO, justifying the needs of modifying C with metal oxides.

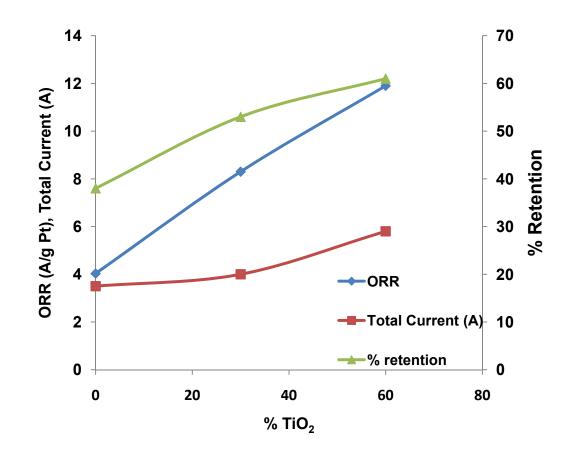

RDE and MEA Tests: Protocol

RDE test: fast screening

- To separate Pt nanoparticle dissolution/redeposition from carbon support corrosion
 - focus on carbon support corrosion.
- Potential step accelerated degradation test (1.4V-0.85V).

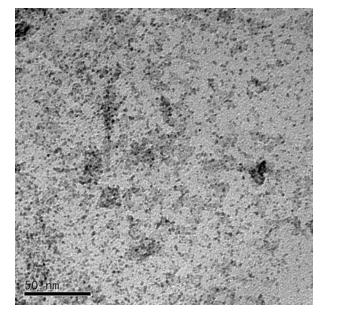

MEA test

- Hold fuel cell for 20h at 1.2V/80°C under 100% RH H₂/N₂
- Determine polarization curves and activity at 0.9V
- Determine amount of CO₂ evolved for selected experiments using mass spectrometer
- Relate degradation to CO₂ evolved and charge passed during potential hold


MEA Testing – Correlation of Degradation with CO₂ Evolution During 1.2V hold

Degradation increases with carbon loss - threshold for carbon loss > 20% for significant degradation

MEA Testing – Activity and Stability of 20% Pt on Graphene Support with Different Amount of TiO₂ Modification

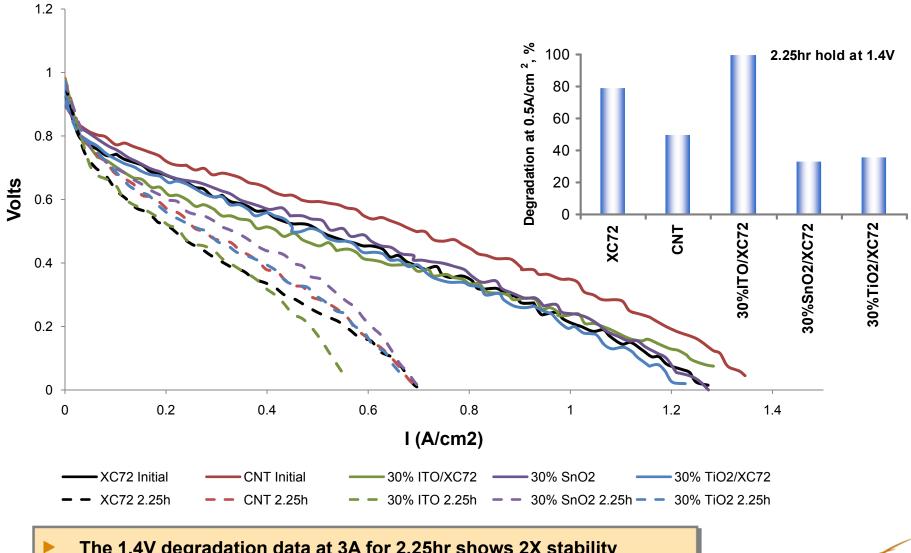

Activity and stability increased with TiO₂ content

Pacific Northwes

NATIONAL LABORATORY

Promise for use of higher TiO₂ loading

Addition of TiO₂ on Graphene



- TEM image shows a uniform dispersion of Pt nanoparticles on the substrate of 60%TiO₂/40%graphene.
- XRD spectra shows the size of Pt nanoparticles decreased on the TiO₂ modified graphene substrates.

MEA Testing – Activity and Stability of 20% Pt on CNT and MO_x Modified XC72 at 1.4V Hold

The 1.4V degradation data at 3A for 2.25hr shows 2X stability improvement for 30%TiO₂/XC72 and 30%SnO₂/XC72 over XC72

