2009 DOE Hydrogen Program Annual Review: Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

Fernando Garzon Los Alamos National Laboratory May 20, 2009

FC_22_Garzon

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Technical Staff

Los Alamos

Rod Borup Eric Brosha John Davey Fernando Garzon Mark Nelson Tommy Rockward Josemari Sansiñena Tom Springer Francisco Uribe Case Western Reserve University Brian Kienitz Thomas Zawodzinski

> <u>Cidetec, Spain</u> Idoia Urdampilleta

<u>University of So Paulo, Brazil</u> Thiago Lopes

Overview

Timeline

- Project start date FY-07
- Project end date FY-11
- Percent complete 60%

Budget

- Total project funding
 - DOE share
 - Contractor share
- Funding received in FY08 -1.2M
- Funding for FY09- 800K

Barriers

- Costs:
 - Fuel and air purification systems add cost
 - Impurity effects decrease fuel cell lifetime
 - Performance:
- Impurities and contaminants decrease fuel cell performance

Collaborators:

Relevance

- Objectives
 - Understand the effects of fuel cell operation with less than pure fuel and air; simulate "real world" operation.
 - Understand how impurities affect DOE fuel cell cost and performance targets
 - Contribute to the scientific understanding of impurity-fuel cell component interactions and performance inhibition mechanisms
 - Develop science based models of impurity interactions upon fuel cell performance
 - Experimental validation of models
 - Develop mitigation strategies and methods
- Impact
 - Lowing cost of fuel cell operation by improving performance and increasing lifetime

Technical Approach

- Impurities affect fuel cells in many ways:
 - Electrocatalyst poisoning e.g. H₂S, CO and SO₂ adsorption onto Pt catalysts
 - Reduce ionomer conductivity- Na⁺, Ca⁺⁺, NH₃
 - Block proton access to electrochemically active interface
 - Mass transport of water in ionmer may be reduced
 - GDLs may become hydrophilic and flood at high current densities

•Fabricate and operate fuel cells under controlled impurity gases

- -Multi-gas mixing manifolds and FC test stations
- -Pre-blend impurity gases
- -Measure performance
- -Steady state and cycling conditions
 - •Understand degradation mechanisms
 - •Study mitigation approaches
- •Design supporting experiments to measure fundamental parameters needed for modeling
 - -Electroanalytical experiments
 - -Adsorption studies
 - -Permeation studies
- •Analyze and model data
 - Impurity impact on catalysis
 - •Impurity impact on transport

Basic S-Degradation Mechanism

Anode CV / 3 ppm H₂S 30 Before exposure After exposure 20 Current / mA cm $^{-2}$ 10 0 -10 -20 0.2 1.2 1.4 0.4 0.6 0.8 Potential / V vs. HRE

Deactivation: $Pt + H_2S \square Pt-S + H_2$ (heterogeneous reaction) $Pt + H_2S \square Pt-S + 2H^+ + 2e^-$ (electrochemical reaction) $Pt + SO_2 \square Pt-S + O_2 + 2e^-$ (heterogeneous reaction) $Pt + SO_2 + 4H^+ + 4e^- Pt-S + 2H_2O$ (heterogeneous reaction)

Cleaning: Pt-S + $4H_2O \square$ Pt + SO_4^{2-} + $8H^+$ + $6e^-$

Strong sulfur chemisorption onto Pt deactivates the catalyst
Pt-coverage: more than one monolayer of sulfur
PtS may form under severe conditions

Drive Cycle Testing Effects of 10 ppb H₂S New Results

Cell:50 cm²

- MEA- , anode- 0.10 mg Pt/cm², cath- 0.20 mg Pt/cm²
- Drive Cycle Durability Test:
- Constant voltage mode 0.85V-0.6V
- Conditions— cell temp. 80C, H2: 1.2 stoich, 50 sccm min., 50% RH (63C), 14psig, AIR: 2.0 stoich, 75 sccm min., 50% RH (63C), 14 psig
- Initial pre-exposure run 100
 hours
- After pre-exposure run, a 1000 hour H2S, 10 PPB

Characterizations:

os Alamos

- Collection of a sample of anode and cathode exhaust water for fluorine ion concentration testing
- Polarization tests— 0.95V 0.40V
- CV Analysis for electrochemical surface area changes 0.100V – 0.5V,

No additional degradation due to hydrogen sulfide
observed
membrane
degradation on
cycling is an issue
with ultrathin low
Pt loading MEAs

H₂S Removal *New Results*

- 100 ppb H₂S for approx. 100 hrs.
- CV showed clean surface after 4 cycles
- Performance returned to original
- **Degradation larger** in subsequent poisoning

Did we really remove the H₂S?

Quantifying S adsorption on Pt-C catalysts Quanta 400 ESEM Thermo Si-Drift EDS detector *New Results*

Distribution of S Poisoning New Results

- Does S uniformly poison FCs?
- S adsorption detection difficult in conventional PEMFCS high S to Pt ratios
 - S in Nafion[®]
 - 1% S in C supports (50 to 80% catalyst weight
- Novel test fuel cell geometry
- Thin membrane Pt anode catalyst 0.86mg/cm² without support
 - minimize lonomer content of layer
- Using high sensitivity Thermo Si Drift Detector S concentration can be accurately determined
- Validation in 5 cm cell
 - <u>S concentrations vary from 0.9 to 2% from</u> inlet to outlet while Pt&F (from ionomer) concentrations nearly constant
- Next study: 50 cm segmented cell

Si drift detectors

- •Closer working distances & entire wafer is active
- •Low Capacitance and noise
- •Up to 10 times higher count than conventional EDS Si(Li)
 •Improved accuracy under current conditions
- •Higher count rates even at low beam current
- •Enable chemical microscopy with high resolution for low energy peaks >50nm resolution

H₂S Crossover Measurements New Results

- Analytical technique using commercial Ag/AgS ion probes to trap H₂S that permeates through Nafion[®] has been developed and used to measure rates.
- Technique was focus in previous reviews/updates.
 - Chemical trap followed by lead nitrate titration using ion probe to determine endpoint.
 - Methods used for N117, N112, and N212 membranes at 25°C
 - $50 \text{ cm}^2 \text{ with GDL (no catalyst), 1000ppm and 96 ppm sources of H_2S used, mixed from pure H_2S$

NATIONAL LABORATORY EST. 1943

Results of comprehensive crossover study:

H ₂ S Concentration (Source gas)	Nafion® Membrane	Humidification State	Crossover/H ₂ S trapping rate (g/s)	Permeation Constant (g/s•atm•cm)
1000 ppm	212	dry	7.46x10 ⁻⁹	$7.58 \mathrm{x10}^{-10}$
		wet	2.68×10^{-8}	2.72x10 ⁻⁹
	117 (a)	dry	2.51x10 ⁻⁹	8.79x10 ⁻¹⁰
	117 (b)	dry	2.43x10 ⁻⁹	8.50x10 ⁻¹⁰
	117 (a)	wet	6.86x10 ⁻⁹	2.40x10 ⁻⁹
	117 (b)	wet	5.94x10 ⁻⁹	2.08x10 ⁻⁹
	112	wet	3.59x10 ⁻⁸	3.44x10 ⁻⁹
		wet	$4.86 ext{x} 10^{-8}$	4.65x10 ⁻⁹
96 ppm	112	wet	2.23x10 ⁻⁹	2.36x10 ⁻⁹
		wet	2.24x10 ⁻⁹	2.36x10 ⁻⁹

•Hydrogen sulfide crossover rates well-characterized

E.L. Brosha, T. Rockward, F.A. Uribe, and F. Garzon, "Measurement of H₂S Crossover Rates in Fuel Cell Nafion[®] Membranes Using Ion-probe Techniques." To be submitted: *J. Electrochem. Soc.* Spring 2009.

Thin-Ionomer PEMFC Exposure to SO₂ New Results

- Sulfur dioxide emissions are very large in developing economies
- Major culprit for fuel cell failure in some Asian test markets
- Source -coal and high sulfur petroleum fuel combustion
- 50 cm² 5ppm SO₂ cathode injection:0.8 A/cm²
- 0.1mg/cm² anode-0.2mg/cm² cathode 25µm ionomer
- Voltage loss with partial recovery
- Similar performance loss to thicker membrane FC's previously tested

Cathode Impurity: 5 ppm SO₂ 0.1/0.2 mg Pt/cm

NO_x *New Results*

- 0.1mg/cm² Pt-C anode-0.2mg/cm² Pt-C cathode 50µm ionomer
- Fuel Cell Testing of 5ppm NO₂ cathode 1 A/cm² 80°C
- Steady decay in performance
- Some humidification dependence on performance losses
 - Higher humdification may remove more soluble NO₂
- FTIR spectroscopy to detect speciation

FTIR Spectroscopy

5000

lamos

Ammonium exchange membrane compared to NO₂ exposed MEA

0.6

0.5

0.4

- ammonium ions 2400-3200 cm⁻¹
- Sharp peaks at 2800 cm⁻¹ may be amine vibrational modes .

Hydrocarbon Effects New Results

Hydrocarbons: Effects of Propane A/C: 0.1/0.2 mg Pt/cm² 2 mil, 50cm²,80°C, 100 % RH

- 0.1mg/cm² Pt-C anode-0.2mg/cm² Pt-C cathode 50µm ionomer
- Propane injected resulted in little performance loss
- Increasing concentration did not change loss rate at 1 amp/cm² constant current

 0.1mg/cm² Pt-C anode-0.2mg/cm² Pt-C cathode 50μm ionomer

Hydrocarbons: Effects of Propylene

A/C: 0.1/0.2 mg Pt/cm²

 No effect of 5 to 25ppm injection of Propylene C₃H₆

Ammonium Ion Membrane Equilibrium

Ammonia oxidation rate is insignificant
removal mechanism is aqua ammoniaequilibrium

 μ_{nafion} = $\mu_{solution}$ (system at equilibrium)

Ammonia Removal Mechanisms New Results

- Two possible mechanisms for ammonia removal from membranes:
 - Electro-oxidation:

$$2NH_{4\,Nafion}^{+} \rightarrow 8H_{Nafion}^{+} + N_{2} + 6e^{-}$$
- Water solubility:

 $NH_{4\,Nafion}^{+} + H_2 O \rightarrow NH_{3(aq)} + H_{Nafion}^{+}$

 $[NH_{4\,Nafion}^{+}] = \frac{[NH_{3(aq)}][H_{Nafion}^{+}]}{k_{ea}[H_2O]}$

Ammonium ion oxidation rate in perchloric acid-very slow

Ammonium ion oxidation rate in PEMFC- also very slow

Fuel Cell Researce

Membrane Blocking Cation Model and Validation

- •Na⁺, K⁺, NH₄⁺, Ca⁺², Cs⁺ enter/leave on a long time scale and affect conductivity dynamically. Only H⁺ enters/ leaves membrane on short time scale.
- •Water transport/electroosmotic-drag included, but boundary content maintained at λ =14 H₂O/SO₃⁻.
- •H-pump, not FC, model focuses on membrane effects, simplifies experimental verification and understanding.
- •Time response, limiting current discussed

•AC impedance model

Initial uniform 50% H^+ and NH_4^+ distribution Step current from 0 to 0.25 A/cm² $D_H = 1.73 \cdot 10^{-5} \text{ cm}^2/\text{s}$, $D_B = 3.63 \cdot 10^{-6}$ y_h and ϕ plotted every 0.2 s

Length cm uel Cell Research

Concentrated Solution Transport Equations Used in Membrane

Transient Concentration Profiles New Results

 Modeled transient concentration profiles across a monvalent cation-contaminated fuel cell (50 μm ionomer) operating at constant current density of 1.0 A/cm²
 Protons strongly depleted at cathode

•Membrane HFR would shift only slightly for low cation impurity levels

- •Time scale of cation migration event may be probed in the 0.1-1 Hz range by AC
- impedance

Alamos

Impedance Response New Results

Point electrode simulation for Nafion[®] 117 50% Cs exchange C_D 0.1F/cm² j=0.3A/cm²

AC impedance data .01-10KHz Nafion[®] 117 50% Cs exchange Pt loading 6mg/cm²

Visualization of Impurity Metal Cation Transport Using X-Ray Radiography *New Results*

Milestones

Month/Year	Milestone or Go/No-Go Decision	
Feb-09	Milestone: Report on the hydrogen sulfide membrane permeability Completed	
Feb-09	Milestone: Completed determination of alkane and alkene hydrocarbon effects on PEMFC performance. Completed	
March-09	Milestone: We have expanded our cation contamination model to include water effects in membranes.	
March-09	Milestone: Experimental validation of AC response of the cation impurity effects model	
March-09	Milestone: determination of the electrochemical oxidation rates of ammonia in acidic solutions and PEMFCS	

Summary/Future Work

- Low concentrations of S poisoning are not decreasing performance of prototype thin membrane/ low Pt loading MEAs
- S poisoning is probably not uniform
 - Future segmented cell and impurity imaging studies on 50 cm² cells
- Common hydrocarbons C1-C3 at PPM concentrations do not impact fuel cell performance
- SO₂ decreases fuel cell performance of low loading thin ionomer PEMFCs in a similar manner to the older generation-thicker membrane PEMFCs
- NO₂ decreases fuel cell performance
 - May be converted into other N-species at electrodes
 - Future work: improved understanding of membrane speciation via spectrocopy
- NH₃ exists in membranes as NH₄⁺
 - slow equilibrium with water
 - Electrochemical oxidation rate is negligible in acidic conditions
 - Removal via water equilibrium
 - Future work: Membrane transport studies-water equilibrium studies & FC testing of loss rates
- Validated cation impurity models-explain why low levels of contaminants can cause significant performance losses
 - Need to model water effects (λ) in electrodes
 - Extend model to analyze slowly diffusing divalent metal cations
 - Future experiments at NIST to determine cation- impurity effects on water transport
 - Future in situ imaging of operating cation fuel cells by X-ray tomography

We gratefully acknowledge funding from the US DOE Office of Hydrogen, Fuel Cell and Infrastructure Technologies

