Platinum Group Metal Recycling Technology Development

Dr. Lawrence Shore BASF Catalysts LLC Iselin, NJ 08830 5/21/2009

fc_33_shore

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

Start - 11/2003

Finish – extended to 10/2009

■98% Complete

Budget

Total project funding

- DOE share = \$4.03MM
- BASF share = \$1.01MM
- \$536k received in FY08
- \$517k budgeted for FY09

Barriers

- N (Cost)
- O (Stack Material and Manufacturing Cost)
- \$45/kw for transportation
- ■\$400-\$700kw for stationary

Current Partners - Ceralink

Interactions/Collaborators

- W.L. Gore, 3M, Pemeas (MEAs)
- Parr Company, De Dietrich/Rosenmund (reactor design)
- Hosakawa Polymer Systems (milling)
- B.F. Enterprizes (sonication)

Objectives for 2008-2009 - Relevance

- Achieve Pt recovery rate of 98%
 - To lower the effective cost of Pt used in the MEA
 - Simplify process so that Pt recovery is achieved using a single leach
 - To reduce the cost of Pt recovery by increasing throughput
- Determine chemistry and reaction conditions to optimize Pt leaching
 - To reduce reagent usage, reducing process cost
 - To reduce cost of construction for the reactor vessel by identifying the most appropriate reactor liner

Milestones for 2008-2009

Date	Milestone
Oct-08	 Evaluate hot-melt agglomeration as a substitute for MEA surfactant wetting
Oct-08	✓Demonstrate feasibility of pre-embrittlement with LN ₂
Oct-08	Complete evaluation of Laser ablation-ICP for QC testing
Dec-08	Determine preferred order of reagent addition in leaching
Mar-09	✓Reduce reagent consumption
Mar-09	Re-examine reactor materials of construction
Mar-09	✓Recalculate process economics

Approach - Overview

🗆 = BASF

Technical Accomplishments (Summary)

- Achieved the objective of 98% Pt recovery without HF release
- Simplified the process so that leaching can be performed in one step in one vessel
- Identified room-temperature alternatives to milling requiring cryogenic cooling
- Reduced the reagent usage required for Pt leaching
- Calibrated the laser ablation-ICP method as an at-line QC test for leach efficiency (supplemental slides)
- Validated a process for pre-leaching of PBI MEAs to remove H₃PO₄ (supplemental slides)

Technical Accomplishments

Achieved the objective of 98% Pt recovery

- Determined that a limiting factor is low HCI concentration
 - Minimizing HNO₃ used increases HCI excess
 - Using azeotropic HCI (21%) lowers Pt yield compared to using concentrated (37%) HCI by ~4%
- Order of addition of reagents is also important
 - Highest Pt yield achieved when HCl is added to MEA powder first, followed by HNO₃
 - This information impacts the selection of reactor materials of construction

Titanium resistance to digestion reagents (Evaluated at Ceralink, Troy, NY)

- Ti attacked by reducing acids HCI, HF
- Ti protected by oxidizers wet Cl₂ (HCIO), HNO₃
 - Timet reports 1% HNO₃ provides strong resistance to boiling HCI
 - Testing found
 - − Aqua Regia (3.3 HCl : 1 HNO₃) → Ti has good resistance
 - − HCI:H₂O₂ → Ti has good resistance at low temperature < 0.01 % at 100 125 °C
 - − HCI:H₂O₂ → Severe reaction occurred at 200 °C → 58% loss of Ti!!
- Corrosion results indicate order of acid addition may be important with Ti
 - Corrosion testing contributed to selection of Aqua Regia for scale up.
 - Increased Ti corrosion with reduced nitric aqua regia (3.3 HCl : 0.1 HNO₃)

Ti protection by CuSO₄ addition (Compiled by Ceralink, Troy, NY)

- Copper sulfate identified by Timet as an inhibitor of Ti corrosion by HCI
- Concentrations as low as 0.2% in HCI provide high temperature protection
- CuSO₄ significantly improved Ti resistance to Reduced Nitric Aqua Regia (3.3 HCI : 0.1 HNO₃) Uncoated Ti tested at 150 °C for 30 minutes

Technical Accomplishments

- Simplified the process so that leaching can be performed in one step in one vessel
 - Non-optimized lab results demonstrate near quantitative Pt recovery from MEA powder
 - − T < 100°C</p>
 - Atmospheric pressure, no oxidant containment
 - Minimal agitation
 - Based on this data, the Rosenmund filter dryer should be able to achieve process objectives in a single vessel
 - Low-speed paddle mixer
 - Filtration and rinsing in place

Technical Accomplishments

Identified alternatives to milling with liquid nitrogen cooling

- Commercial, 5-layer MEA's (including aged CCM's) processed at room temperature using a HPS press side granulator
 - Process almost dust-free
 - Lost-cost operation
 - Leaching experiments show that the milling product is fully accessible to reagents
 - Downside is that the product is very heterogenous and sampling must be performed carefully

Cost of liquid nitrogen and embrittling mechanism are avoided.

Photomicrograph of Agglomerated MEA's (Pre-embrittled/LN₂ Milled GDE)

Carbon fibers Agglomerated carbon particles 1111 20.0 um

BASE

The Chemical Company

Technical Accomplishments

Reduced the nitric acid required for Pt leaching

- HNO₃ added to leach vessel at $\sim 10\%$ of aqua regia stoichiometry
 - Roughly \$0.12 per kg of MEA powder
 - Using less acid reduces NOx scrubbing requirements, including NaOH for neutralization
 - Using less acid increases HCI available for recycle (~90%)
 - Azeotrope breaker needed to convert HCI/water distillate to concentrated HCI

Technical Accomplishments

Surfactant usage reduced significantly

- Surfactant requirement minimized by:
 - Granulation of MEA's
 - Use of sonication for rapid particle wetting and dispersion

Surfactant usage impacted by GDL material

- » For woven fiber*, use 1% wt/wt of MEA
- » For carbon paper, use 0.2% wt/wt of MEA

This usage corresponds to roughly \$0.30 of surfactant per kg of MEA material.

* Granulated woven fiber material is very bulky.

Progression of MEA Milling Studies

Reduced Nitric Acid used @ 2 surfactant levels shows adding HCI first is good leaching milled carbon-cloth GDE's

Treatment	Acid Priority	Surfactant	% Pt yield
Milled and wetted	Aqua Regia ¹	2g of 5% wt/wt	86.3 (90.6*)
	HNO ₃ ² , then HCI	1g of 1% wt/wt	86.8
	HNO ₃ ² , then HCI	0.5g of 5% wt/wt	97.2
	HCI, then HNO ₃ ²	1g of 1% wt/wt.	96.6
	HCI, then HNO ₃ ²	0.5g of 5% wt/wt	98.5
Milled and	HCI, then HNO ₃ ² or	Melt agglomerated	99.1
Agglomerated	HNO ₃ ² , then HCI	@ 22% of MEA	

1 - 5 mL of HNO3, 2 - 1g or 0.65 mL of HNO3

* Value obtained at Ceralink using pressurized microwave method.

The Chemical Compan[,]

Pt Yields for Cryo-milled and Agglomerated GDE Powders (Process 1)-One-step extraction + rinse

- 99.1 % average yield when concentrated HCI added first
- High yield (98.8 average) when HNO₃ added first if g sample/g HNO₃ > 0.5 and concentrated HCI is then added

Acid Priority	% HCI	g HNO3	g sample		% Pt yield
HNO3	37	0.96	0.514	0.54	97.9
HNO3	37	2.98	0.537	0.18	91.7
HCI	37	1.04	0.518	0.50	98.9
HCI	37	3.06	0.534	0.17	98.3
HNO3	37	1.02	1.022	1.00	98.9
HNO3	37	1.08	1.532	1.42	98.9
HCI	37	1.14	1.043	0.91	99.2
HCI	37	1.12	1.546	1.38	99.1
HNO3	21	1.08	1.005	0.93	95.4
HNO3	21	1.07	1.547	1.45	94.6
HCI	21	1.07	1.012	0.95	97.3
HCI	21	1.30	1.530	1.18	96.5

Pt Yields for Cryo-milled and Agglomerated GDE Powders (Process 2)-One-step extraction + rinse

- 98.9 % average yield when concentrated HCI added first
- High yield (98.5 average) when HNO₃ added first if g sample/g HNO₃ > 0.5 and concentrated HCI is then added

Acid Priority	% HCI	g HNO3	g sample		% Pt yield
HNO3	37	0.96	0.514	0.54	97.9
HNO3	37	2.98	0.537	0.18	91.7
HCI	37	1.04	0.518	0.50	98.9
HCI	37	3.06	0.534	0.17	98.3
HNO3	37	1.02	1.022	1.00	98.9
HNO3	37	1.08	1.532	1.42	98.9
HCI	37	1.14	1.043	0.91	99.2
HCI	37	1.12	1.546	1.38	99.1
HNO3	21	1.08	1.005	0.93	95.4
HNO3	21	1.07	' 1.547	1.45	94.6
HCI	21	1.07	1.012	0.95	97.3
HCI	21	1.30	1.530	1.18	96.5

Pt Recovery Modified to Achieve 98% Pt Recovery in One Leach (Option A shown)

125 kg/hr ground Blending of different lots MEA Membrane electrode for process stability 1 % of Pt assembly (MEA) Surfactant Leach with Offgas HCI/HNO₃ treatment Warehouse HCI Recycle Granulation Filter in place, Rinse. Filter in place Sampling for liquid pricing of lot Concentration Product solid 20 g/l Pt in dilute Warehouse HCI to refining

The Chemical Company

Comparison of Pt Yields for Granulated MEA's - >97% yield for GDE's and >98% for Aged CCM's (Single Leach Step)

🗖 🗖 BASE

The Chemical Company

Comparison of Est. Variable Costs per kg MEA - Granulation vs. Cryo-milling with Agglomeration (Pt value ~ \$320/kg MEA)

- Granulation 98% yield
- Raw materials \$0.60/kg
- Energy \$0.35/kg
- Waste disposal- \$0.06/kg (dry)
- Labor \$1.20/kg
- Total variable \$2.21

- Cryo-milling and agglomeration-99% yield
- Raw materials \$1.05/kg
- Energy \$0.35/kg
- Waste disposal- \$0.08/kg (dry)
- Labor \$1.20/kg
- Total variable \$2.68
- Differential (variable + depreciation) <\$0.60/kg</p>

1% increase in Pt yield is equivalent to \$3.20/kg MEA based on 1% Pt content in MEA and \$1000 per troy ounce of Pt.

Potential Improved Pt Yield from Leached Granulated MEA Using Sonicated Rinse

% Pt yield **Rinse method** Reagent Manual rinse Hot water 97.4 Sonicated rinse Warm water 98.2 Sonicated rinse 1:9 HCI/water solution 98.0 Sonicated rinse 1% NaOH solution 98.6

D = BASF

Proposed Pilot Plant Layout- 1600 sf (Pilot plant, Lab Area, Utility and Storage) Estimated cost of \$1.5MM

G-1 GENERAL ARRANGEMENT - PLAN VIEW scale: 3/8" - 1'-0" 🗆 = BASF

The Chemical Company

Collaborations

- Hammerhead Engineering, Flemington, NJ (Consultant, industry)
 - Completed cost estimate and floor plan for a pilot plant
 - Ceralink, Troy, NY (Consultant, industry)
 - Corrosion studies of titanium
 - Comparative MEA leaching in a sealed environment
 - Scale-up studies using a stirred Parr reactor
 - B.F. Enterprizes, Pittsburgh, PA (Supplier, industry)
 - Contributed a leaching solution for phosphoric acid from 'PBI' MEA's combining hardware from Omegasonics and chemicals from MEC Chemicals

Collaborations (continued)

- Hosokawa Polymer Systems, Berlin, CT (Supplier, industry)
 - Demonstrated capability to granulate as-received MEA's using a knife-edge cutting mill
- Thermo Fisher, Chicago, IL (Supplier, Industry)
 - Determined carbon interference factors for ICP-MS
- DeDietrich/Rosenmund (Supplier, industry)
 - Helped design an all-in-one reactor

Summary

- Pt recovery of >98% has been achieved from MEA's (milled and granulated) using a oxidative leaching process
- A simplified leaching process can be practiced in a single vessel
- Reduction of reagent usage has decreased process cost while increasing Pt yield
- Operated commercially, the process requires little manual labor and generates minimal waste (solid residue of the leached MEA's)
- Direct analysis of leached MEA slurry can be practiced for process quality control

Future Work

- Quantify Pt yield improvement using a sonicated rinse
- Use titanium-lined Parr reactor to test scale-up using HCI-rich leaching conditions
 - Optimize temperature, pressure and agitation
 - Preliminary results @ 100°C
 - LN₂ milled GDE
 98.5% yield
 - Pre-embrittled/milled/agglomerated GDE 99.5% yield

Compile final project report

Supplemental Slides

Technical Accomplishments – At-line QC test based on residual Pt measurement and Mg Silicate as internal standard

- Calibrated the laser ablation-ICP method as an at-line QC test for leach efficiency
 - Calibration performed using MEA powder with 2.5% Pt and leached powder with ~0.25% Pt
 - Linearity achieved between 0 and 2.5% Pt
 - Good precision achieved using in-line addition of an internal standard powder (10% by weight of MEA)
 - Relative standard deviation of mean <6% (based on statistics for sets of 5 second integrations) at 0.25% Pt level
 - Sensitivity of measurement can be increased using ICP-MS in place of ICP-OES

Calibration of Pt Signal from Milled CCM Sample (W.L. Gore)- Laser Ablation-ICP with Mg Silicate Internal Standard

Relationship between Intensity Ratio and Residual Pt for Leached CCM Powder- Pt 214.4 nm and Pt 265.9 nm Lines

BASE

The Chemical Company

Technical Accomplishments – Use of Mass Spec using Laser Ablation and ICP

- Mg is difficult to use as an internal standard for ICP-OES because of excessive sensitivity
- Using ICP-MS, Mg₂₄ can be used as the internal standard
- Molecular interferences from carbon may exist
 - Potential for C₁₂ dimer interference on Mg₂₄ was investigated at Thermo Fisher and found to be negligible
 - When using a collision reaction cell, insignificant bias measured at 10⁷ carbon/magnesium ratio
 - Using a standard configuration, a 50% bias was measured at a 10⁷ carbon/magnesium ratio

Technical Accomplishments

Validated a process for pre-leaching of PBI membranes to remove H₃PO₄

- Leaching performed in an ultrasonic bath using ½" wide strips of PBIbased MEA's
- 75% of acid leached using cold water, independent of contact time
- >99% of the acid removed using a two-step treatment of proprietary cleaning aids
 - Virgin MEA's delaminated, used MEA's stayed intact
 - Residual H₃PO₄ determined by leaching in a sealed vessel using HCI
 - Accuracy of leaching in HCI validated by milling, then re-leaching of sample

The Chemical Company

Ultrasonic Extraction of Used MEAs with Additives Greatly Improves H_3PO_4 Extraction. Residual acid reduced from ~25% to <0.2% (or 99+% removal.)

Effect of Treatment and time on H₃PO₄ Residue for Used PBI MEA's (Samples not delaminated, contain moisture)

Two-step — One Step — Water

The Chemical Compan[,]