Water Transport Exploratory Studies

2009 DOE Hydrogen Program Review

May 18-22, 2009

Presented by: Rod Borup

Solicitation Partners:

Los Alamos National Lab, National Institute of Standards and Technology, Sandia National Lab, Oak Ridge National Lab, SGL Carbon, W.L. Gore, Case Western Reserve University

Additional Partners/Collaborations:

University of Texas-Austin, Lawrence Berkeley National Lab, Nuvera Fuel Cells

FC_35_Borup

os Alamos

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project initiated FY07
 - Start March '07
- 4 year Project Duration
 - End March '11
- ~> 50 % complete

Budget

- Total project funding
 - DOE Cost: \$6,550,000

(over 4 yrs)

- Cost Share: \$290,811
- Funding for FY09
 LANL \$1100k
 Partners (Univ. & Ind.) \$200k
 Other National Labs \$350k
 FY09 Total \$1650k

Barriers

Water management is critical for optimal operation of PEM Fuel Cells

- Energy efficiency
- Power density
- Specific power
- Cost
- Start up and shut down energy
- Freeze Start Operation

Partners

- Direct collaboration with Industry, Universities and other National Labs (see list)
- Interactions with other interested developers
- Project lead: Los Alamos National Lab

Collaboration: Organizations / Partners

- Los Alamos National Lab: Rod Borup, Rangachary Mukundan, John Davey, David Wood, Partha Mukherjee, Jacob Spendelow, Tom Springer, Tommy Rockward, Fernando Garzon, Mark Nelson
- Sandia National Laboratory: Ken Chen & C.Y Wang (PSU)
- Oak Ridge National Lab: Karren More
- Case Western Reserve University: Tom Zawodzinski
- SGL Carbon Group: Peter Wilde
- National Institute of Standards and Technology (no-cost): Daniel Hussey, David Jacobson, Muhammad Arif
- W. L. Gore and Associates, Inc.: Will Johnson, Simon Cleghorn (Purchase request basis)
- Lawrence Berkeley National Lab: Adam Weber, Haluna P. Gunterman (directly funded)
- Univ. Texas-Austin (additional sub-contract): Jeremy Meyers
- Nuvera: James Cross, Amedeo Conti (Technical Assistance freeze workshop)

Relevance: Objectives

- Develop understanding of water transport in PEM Fuel
 Cells (non-design-specific)
 - Evaluate structural and surface properties of materials affecting water transport and performance
 - Develop (Enable) new components and operating methods
 - Accurately model water transport within the fuel cell
 - Develop a better understanding of the effects of freeze/thaw cycles and operation
 - Develop models which accurately predict cell water content and water distributions
 - Work with developers to better state-of-art
 - Present and publish results

Approach

• Experimentally measure water in situ operating fuel cells

- Neutron Imaging of water
- HFR, AC impedance measurements
- Transient responses to water, water balance measurements
- Freeze measurement / low temperature conductivity
 - Understand the effects of freeze/thaw cycles and operation
 - Help guide mitigation strategies.

Characterization of materials responsible for water transport

- Evaluate structural and surface properties of materials affecting water transport
 - Measure/model structural and surface properties of material components
 - Determine how material properties affect water transport (and performance)
 - Evaluate materials properties before/after operation

Modeling of water transport within fuel cells

- Water profile in membranes, catalyst layers, GDLs
- Water movement via electro-osmotic drag, diffusion, migration and removal

• Develop (enable) new components and operating methods

Evaluate materials effects on water transport

In situ Measurement of Membrane Water

- Membrane conductivity is a f(water content)
 - ($\lambda = #$ of Water molecules per # of sulphonic acid sites)
 - Large literature base measuring water in Nafion[®]
 - Vast majority of studies were conducted ex situ
- T. E. Springer, T. A. Zawodzinski, and S.
 Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., Vol. 138, No. 8, 1991 2334 (λ = 14 at Cathode interface)
- Zawodzinski, et al., J. Electrochem. Soc., Vol. 140, No. 4, April 1993

 (λ as a f(RH) – λ = 14 RH=100, λ = 22 Liq.)
- J. T. Hinatsu, M. Mizuhata, and H. Takenaka, J. Electrochem. Soc., Vol. 141, No. 6, June 1994 (λ as a f(RH) at 80 oC by thermogravimetric)
- L.M. Onishi, J.M. Prausnitz and J. Newman, J. Phys. Chem. B 2007, 111, 10166-10173 (Membrane water content is a f(thermal history) $\lambda = 13-14$ (predried), $\lambda = 21 + - 1$ (preboiled) (Suggest why 26 papers are 'incorrect')

Prior Neutron Imaging and modeling based off of literature results show large discrepancy (Factor of 4 difference)

A.Z.Weber, M.A. Hickner, Electrochimica Acta 53 (2008) 7668.

Worked with NIST to *in situ* evaluate membrane water

- Measured through-plane water content:
 - Gore 18 micron membrane
 - N212
 - N117
 - N117 3-layer sandwich
 - 20 mil Nafion® Membrane
 - 40 mil Nafion® Membrane

Equilibrated with RH, Liquid water, under fuel cell operation, under H_2 pump operation.

Water Profiles for Different Membrane Geometries

20 mil Nafion[®] Membrane (RH Equilibration, Fuel Cell and H₂ Pump Operation)

Fuel Cell Operation

100/100 % RH 40 C

- Single Nafion[®] 20 mil electrolyte
- 6mg/cm² Pt on cathode and anode
- SGL Sigracet[®] 24 AA (Hydrophilic no MPL)
- Vertical setup

٠

- Water profile is not flat at OCV. → due to edge effects.
- Middle 7 pixels vary by <4% for the 50/50 case and <5% for the 100/100 case.

Hydrogen Pump

- Membrane hydration is observed to be
 - λ = 5.0 (50/50%) and 8.3 (100/100%)
 - λ increases with water production (Fuel Cell) and with H₂ pump (liquid water formation, electro-osmotic drag)
 - Observed differences with 40 mil membrane at 80 °C & super-saturated conditions
- At 100/100, 0.1 A there is no discernible difference between pump operation and normal operation
- At 100/100, 0.2 A cathode flow field become wet when the cell is operated in fuel cell, however not in H₂ pump mode
- Increasing pump current causes decreasing water on the anode and increasing water on the cathode side.

λ Comparison

• Cathode under-saturated - Membrane water increases from $\lambda \approx 6$ to $\lambda \approx 10$ with current

- Membrane water gradients observed, much less than in modeling literature
- Reasonable agreement with some literature data at low RH
 - Do not measure absolute reliance on 'membrane thermal history'
 - Membranes will equilibrate at different λ for 100% RH and liquid water
 - •Observe higher λ at equivalent water activity at higher temperatures

• Other recent literature on in situ measurements of membrane water content:

Tsushima, Shoji, **Water Transport Analysis by Magnetic Resonance Imaging**, LANL/AIST Meeting, San Diego, 2008 A. Isopo, V. Rossi Albertini, **An original laboratory X-ray diffraction method for** *in situ* **investigations on the water dynamics in a fuel cell proton exchange membrane**, Journal of Power Sources 184 (2008) 23–28

Wetting Transient Wetting from 0.5A to 34A 40C and 0/0 inlet RH

Minimum flows at 82cc/min and 333cc/min at the anode and cathode @ 0.5A. At 34A it is 1.2 and 2.0 stoich flows.

Drying Transient

Drying from 34A to 0.5A 40C and 0/0 inlet RH

• Wetting response is faster (10 – 30 sec) than the reciprocal drying response (~ minutes)

- Wetting response is the result of water produced at cathode which quickly back diffuses to into the membrane.
- Drying response requires water to move out of the MEA through wetted GDLs.

Segmented Polarization Data for Different *Cathode* GDLs

Segmented Cell Measurements show where Mass Transport losses dominate versus where IR losses, and kinetic occur

- Cathode GDL:
 - GDL 24BC (5/23 wt% PTFE substrate/MPL)
 - GDL 24B"C"5 (5/5 wt% PTFE substrate/MPL)
- Anode GDL:
 - GDL 24BC (5/23 wt% PTFE substrate/MPL)

AC Impedance Data of Different Segments for Different Cathode **GDLs**

- GDL 24BC5 maintains higher water content in catalyst layer at high V and high RH (i.e. lower impedance).
- GDL 24BC has better water management at low V and low RH.

Interrelation of GDL, Catalyst and membrane

- Increasing ECSA loss with segment position due to greater water content
- Greater increase in membrane crossover and lower ECSA for 24BC5 compared with 24BC (over 308 hrs)
 - higher liquid water content in cathode catalyst layer with 24BC5.
- Demonstrates interrelated durability effects between GDL (water content), membrane and catalyst.

Freeze: Low resolution imaging

- Membrane hydration due to the generated current and back diffusion is dominant at sub-freezing temperatures
- Ice build up results in charge transfer and mass transfer resistance increases

Los Alamos

The Institute for Hydroge and Fuel Cel Research

Freeze: High resolution imaging

• Location of frozen water (ice) depends on operating temperature and current density

- Water distribution closer to the cathode catalyst layer with:
 - Decreasing temperature
 - Increasing current
- Greater water formation possible at higher temperatures and lower current densities

Freeze Durability

Durability after 4 starts @ -10C is dependant on MEA Gore MEA/Cloth GDL loses 27% cathode ECSA LANL MEA/Cloth GDL loses 7% cathode ECSA Gore MEA/Paper GDL loses 46% cathode ECSA

Durability after \ge 10 starts @ -10C > T > -40C is also dependent on MEA

Paper GDL shows maximum loss in performance

Mass transport losses in addition to kinetic losses

ESEM (Environmental SEM) GDL Cross-Section Water Mapping

- Fluorine distribution uneven
 - Fluorine at outer edges of GDL
- Less H₂O in center of GDL

• Fluorine distribution uneven with carbon

X-RAY Tomograph Image of water in GDL Pores

- Evaluate pore size density and distribution
- Observe GDL compression
- Observe/monitor water diffusion
- Evaluate water wetting and water diffusion pathways

Water Inside SGL GDL Pores

Modeling: Capillary Pressure Simulation

→ Liquid water saturation

- LB model simulates liquid water transport through the CL, insight into underlying two-phase dynamics.
- Capillary pressure and relative permeability as functions of liquid water saturation are employed in macroscopic two-phase fuel cell models.
- Other modeling activities described in supplemental slides (Ken Chen Sandia; Adam Weber LBNL, Jeremy Meyers UTA)

P. P. Mukherjee et al., "Polymer Electrolyte Fuel Cell Modeling – a Pore-Scale Perspective," Chapter in *Progress in Green Energy*, Springer, in press (2008).

Future Work

Experimental and Characterization

- 3-D X-Ray tomography during operation observing water transport in GDL pores
 - Identify hydrophobic pores vs. hydrophillic pores
 - Identify liquid water pathways in GDLs
- Incorporate 3-D X-ray tomography PSD into Capillary Pressure Simulation
- Conduct segmented cell measurements varying the GDL PTFE loading as a function of cell location and with counter-flow inlets configurations.
- Measure the effect of compression and GDL substrate porosity
- Better identify GDL loss of hydrophobicity degradation mechanism
 - Surface characterization (TEM) and surface species identification (DRIFTS)
- Measure capillary pressure in GDLs with concurrent counter flow of water and gas
 - (Collaboration with LBNL \rightarrow LANL visiting student from LBNL)

Modeling

- Develop a multiphase model for simulating ice formation and thawing during start-up, and investigating the effects of cell design (e.g., catalyst-layer thickness, pore volume) on PEMFC startup under sub-zero temperatures.
- Using modeling parameters, correlate impact of diffusion-media wettability on fuel-cell performance and demonstrate agreement with NIST water images
- Effects to examine
 - Heterogeneous structures
 - Separate hydrophobic and hydrophilic PSDs
 - Anisotropy
 - Structural and chemical changes within a GDL
 - Compression
 - Transients including hysteresis

Summary of Technical Accomplishments

Providing fundamental information on water transport

- Varying MPL and substrate Teflon[®] loadings and cell operating conditions
 - Using Neutron imaging, AC impedance to get data about water content and performance
 - Use data to develop comprehensive GDL water transport model in addition to the existing membrane/electrode model
- Equilibrium water content in the membrane, how membrane water content changes with RH, T, current and water production
- Segmented cell operation
 - How water varies as a function of GDLs, inlet RH, cell position, and the effect that water content has on membrane durability and catalyst durability
- Response of GDL and membrane water to transients
 - Fast membrane wetting
 - Slow GDL de-wetting, followed by membrane drying
- GDL Characterization
 - Profiling the GDL in 3-D
 - Observing the location in the GDL structure where water exists
 - Correlating water with Teflon[®] content in the GDL
- Freeze
 - Durability
 - Monitoring where water freezes as a function of operating variables

Thanks to

- U.S. DOE -EERE Hydrogen, Fuel Cells and Infrastructure Technologies Program for financial support of this work
 - Program Manager: Nancy Garland

Additional Slides

Milestones

Mon Yr	Milestone
Dec 08	Demonstrate isothermal operations at -10°C, -20°C, -30°C and -40°C. Report on degradation due to sub- freezing isothermal operations. (ECS Transactions (2008), 16(2), 1939-1950)
Mar 09	Correlate water content data to ex situ membrane and electrode conductivity results <i>(Neutron imaging of water content as f(RH, T, current)</i>
Mar 09	Provide accurate water balance data to verify models (Modified: Provided water content in X, Y,Z as function of operating variables)
Mar 09	NIST to provide z-direction imaging capability (Go/No Go). (Using the cross-section (25 micron) and field view (150 micron) detectors to understand water content in 3-d).
Jun 09	Quantify effects of varying GDL hydrophobicity (Already have used multiple variation of GDL PTFE loadings, will continue to expand matrix)

Modeling Flow in Diffusion Media

- Goal is to model the impact of wettability and two-phase flow
 - Previous model framework^{*} is being modified to include contactangle distribution *A.Z. Weber, et al., JES, 151, A1715 (2004).
- Input parameters
 - 1. Fit the material properties to data (e.g., PSD of SGL24BC)

- 2. Fit a contact-angle distribution to capillary-pressure vs. saturation data
 - Hysteresis needs to be considered
 - Majority of the curve (saturation) is due to the GDL and not MPL pores

- Develop optimum DM structures
 - Optimum contains separate small pore hydrophobic network
- Optimization depends on operating regime
- Resistance mainly in MPL even though saturation dominated by GDL
- Gas pressure as important as liquid pressure since capillary pressure is their difference

- Future Work
 - Using modeling parameters, correlate impact of diffusion-media wettability on fuel-cell performance and demonstrate agreement with NIST water images
 - Effects to examine
 - Heterogeneous structures
 - Separate hydrophobic and hydrophilic PSDs
 - Anisotropy
 - Structural and chemical changes within a GDL
 - Compression
 - Transients including hysteresis
 - Impact of boundary conditions

- 0% (blue) and 5% Teflon[®] (purple) from Gostick
- Red from Nguyen
- Data from Mench not shown

 Data from Schwartz, Nguyen, Gostick, Darling

Unanswered Questions

- Is our approach okay?
 - Can we decouple the two effects...is it reasonable?
- Are there interfacial effects
 - CL, flooding and mass-transport resistance
 - Matching of pore sizes (capillary condensation, intrusion)
 - Droplet removal into the channel
 - Impacted by CAD or PSD?
- Impact of other things
 - Anisotropy in properties
 - Different structural zones
 - Mechanical properties and compression
 - Changes in absolute permeability
- What to do with hysteresis
- Aging?
 - Same PSD (if Teflon[®] does not migrate) but change CAD to make it more hydrophilic

Previous saturation

$$S = f_{\rm HI}S_{\rm HI} + (1 - f_{\rm HI})S_{\rm HO} = f_{\rm HI}\int_{0}^{r_{\rm eHI}} V(r)dr + (1 - f_{\rm HI})\int_{r_{\rm eHO}}^{\infty} V(r)dr = f_{\rm HI}\sum_{k}\frac{f_{\rm r,k}}{2} \left[1 + \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HI} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + (1 - f_{\rm HI})\sum_{k}\frac{f_{\rm r,k}}{2} \left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + \left(1 - f_{\rm HI}\right)\sum_{k}\frac{f_{\rm r,k}}{2} \left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + \left(1 - f_{\rm HI}\right)\sum_{k}\frac{f_{\rm r,k}}{2}\left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + \left(1 - f_{\rm HI}\right)\sum_{k}\frac{f_{\rm r,k}}{2}\left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + \left(1 - f_{\rm HI}\right)\sum_{k}\frac{f_{\rm r,k}}{2}\left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right] + \left(1 - f_{\rm HI}\right)\sum_{k}\frac{f_{\rm r,k}}{2}\left[1 - \operatorname{erf}\left(\frac{\ln r_{\rm c, \, HO} - \ln r_{\rm o,k}}{s_{k}\sqrt{2}}\right)\right]$$

Now

$$S = \iint \Psi(\theta) V(r) dr d\theta = \int \Psi(\theta) \int V(r) dr d\theta = \int \Psi(\theta) \sum_{k} \frac{f_{r,k}}{2} \left[1 + \vartheta_{h} \operatorname{erf}\left(\frac{\ln r_{c,h} - \ln r_{o,k}}{s_{k}\sqrt{2}}\right) \right] d\theta$$
$$= \int_{0}^{90} \sum_{k} f_{r,k} \left\{ \frac{1}{\sigma_{k}\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\theta - \theta_{o,k}}{\sigma_{k}}\right)^{2} \right] \right\} \sum_{k} \frac{f_{r,k}}{2} \left[1 + \operatorname{erf}\left(\frac{\ln\left(-\frac{2\gamma\cos\theta}{p_{C}}\right) - \ln r_{o,k}}{s_{k}\sqrt{2}}\right) \right] d\theta + \int_{90}^{180} \sum_{k} \dots$$

- Do the above using a Gauss-Legendre integration method so have $S = \sum_{i=1}^{20} w_i \sum_k f_{r,k} \left\{ \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\theta_i - \theta_{o,k}}{\sigma_k} \right)^2 \right] \right\} \sum_k \frac{f_{r,k}}{2} \left[1 + \exp\left[\frac{\ln\left(-\frac{2\gamma \cos\theta_i}{p_c} \right) - \ln r_{o,k}}{s_k \sqrt{2}} \right] \right] + \sum_{i=1}^{20} w_i \dots$
 - A 20 term series is used and the w_i 's and θ_i 's are calculated between the range 0 to 90 and 90 to 180
 - Refinement is to use ± 4 standard deviations (σ_k) to increase accuracy
- $f_{HI} \text{ can be seen as}_{f_{HI}} \int_{0}^{90} \sum_{k} f_{r,k} \left\{ \frac{1}{\sigma_{k} \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\theta \theta_{o,k}}{\sigma_{k}}\right)^{2}\right] \right\} (1) d\theta = \sum_{k} \frac{f_{r,k}}{2} \left[1 + \exp\left(\frac{90 \theta_{o,k}}{\sigma_{k} \sqrt{2}}\right)\right]$

Modeling Phase Change in a PEM Fuel Cell: (water vapor \Leftrightarrow liquid water)

Motivation: it is critically important to elucidate the dynamic phenomena inside the PEM fuel cell: Where does water vapor condense? Where does liquid water evaporate? Under what process conditions do condensation/evaporation occur?

Model geometry and cross sections for analysis

Ken S. Chen (kschen@sandia.gov)

Sandia National Labs

Modeling results: computed temperature, saturation, phase-change rate (1.0A/cm2, Stoic (A/C) = 2.0, RH=100%)

Phase-change rate contours (cathode side only)

Cathode Side saturation 0.26 0.25 0.24 0.23 Cathode Cathode 0.22 **Bipolar Plate Bipolar Plate** 0.21 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 0.08 0.07 Anode Anode **Bipolar Plate** 0.06 **Bipolar Plate** 0.05 0.04 0.03 0.02 0.01 Anode Side

- •Temperature is high above/below the channels whereas low above/below the lands due to higher conductivity of the bipolar plate.
- Evaporation takes place in the GDL underneath the channel near the channel-land boundary.
- Condensation mainly occurs within the cathode catalyst layer and in GDL near CL/GDL interface.
- Water also condenses on the cooler land surface.

*Reference: S. Basu, C.-Y. Wang, and K. S. Chen, "Phase change in a polymer electrolyte fuel cell", accepted for publication in *J. Electrochem. Soc.*

Saturation contours

Effect of Inlet Humidity on Phase-Change Rate (I = 1.0A/cm², Stoic = 2.0, at Section A)

- Water vapor condenses on the cooler land surfaces.
- Condensation region at cathode CL & GDL shrinks in size as inlet humidity is lowered.
- Evaporation regions increase in size when inlet humidity is lowered.
- *Reference: S. Basu, C.-Y. Wang, K. S. Chen, accepted for publication in J. Electrochem. Soc.

Transient Water Management Modeling UT Austin On-going Work

Modeling of HFR Transient Response to Step in Current

HFR modeled by neglecting interfacial resistance, and by appropriate timescales of transient processes: quasi-steady state in gas phase; liquid and polymer-phase water profile relaxation