Nitrided Metallic Bipolar Plates

M.P. Brady, T.J. Toops, and P. F. Tortorelli

Oak Ridge National Laboratory Oak Ridge, TN 37831-6115 contact: <u>bradymp@ornl.gov</u> May 21, 2009

Co-Authors: D. Connors, F. Estevez, F. Garzon, D. Gervasio, H. Kosaraju, B. McCarthy, H.M. Meyer, K.L. More, W. Mylan, J. Pihl, J. Rakowski, T. Rockward, J.A. Turner, H. Wang

Project ID FC_40_Tortorelli

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: May 1, 2007
- Finish: Sept. 30, 2010
- ~60% complete

Budget

- Total project funding
 - \$4530k DOE share
 - \$400k Contractor share
- \$1700 k received in FY 08
- \$350 k received in FY 09
- ~\$700 k of planned FY09 \$ deferred to FY 2010 pending milestone go/no go

Barriers

- Metallic bipolar plate durability and cost
- 2010 Targets
 - resistivity < 10 mohm-cm²
 - corrosion < 1 $\times 10^{-6}$ A/cm²
 - $\cos t < $5/kW$

Partners

- ORNL (Lead)
- AGNI-GenCell
- Allegheny Ludlum
- Arizona State University
- LANL
- NREL

Objective: Demonstrate Nitridation to Protect Stamped Metallic Bipolar Plates

Overall Goal: Demonstrate potential for metallic bipolar plates to meet automotive durability goals at cost of < \$5/kW

- Milestone 1: No significant warping or embrittlement of stamped 15 cm² active area plates by nitriding- go/no go 1 -met April 08
- Milestone 2: Single-cell fuel cell test performance for 15 cm² stamped and nitrided metallic bipolar plates equivalent to that of graphite (~750-1000 h, cyclic) - go/no go 2 -postponed to Sept 09
- Milestone 3: 10-cell stack test of 250 cm² stamped and nitrided metallic bipolar plates under automotive drive-cycle conditions (~2000 h) - project end Sept 2010

Nitride to Lower Contact Resistance and Protect Metallic Bipolar Plates from Corrosion

Nitrided Model Bipolar Plate

- •Low-cost, scalable approach -nitrides conductive and corrosion resistant
- •Successful single-cell fuel cell testing with model nitrided Ni-Cr alloys (\$)
- •Goal is to implement <u>stampings</u> of <u>low-cost stainless steel foils</u>

- •Stainless steels internally nitride: corrosion
- •Form Cr_2O_3 by preoxidation to keep N_2 at surface -convert surface Cr_2O_3 to surface Cr_xN by nitridation
- •V added to stainless steel assists conversion to nitride -good ICR and corrosion results with model Fe-27Cr-6V alloy

Scale-Up From Model Alloy Sheet to Stamped and Nitrided Foils

Challenge: Co-optimize ductility (for stamping) and low alloy cost with protective Cr-nitride surface formation in developmental and commercial stainless steel foil 6

Where Did We Leave Off at Last Review?

- •Down select to Fe-20Cr-4V wt.% and 2205 (Fe-22Cr-5Ni +N base) stainless steels based on nitridation studies of <u>sheet</u> material
 - -ICR goals met as-nitrided and after polarization (2205 ICR ~2x target) -Good corrosion resistance in 1M H_2SO_4+2 ppm F⁻ at 70°C -No brittle sigma phase formation during nitriding heat/cool cycle
- •Allegheny Ludlum successfully manufactured 0.1 mm thick foils of series of developmental Fe-Cr-V base alloys
- •AGNI-GenCell completed stamping assessment of a series of developmental and commercial stainless steel foils -No significant warping or embrittlement with nitrided stampings
- •Preliminary cost estimate by Directed Technologies: < 3 h, 1000°C nitriding cycle can potentially meet DOE cost targets

New FY09 work conducted with <u>0.1 mm stainless steel foils</u> using pre-oxidation and < 3 h, 1000°C nitriding cycle 7

Nitrided <u>Foils</u> Exhibit Good Corrosion Resistance Under Simulated Aggressive Anode Conditions

Polarization Evaluation at 70°C in 1M H_2SO_4 + 2 ppm F⁻ held at +0.14V vs SHE, H_2 purged

•Nitrided foil current densities comparable to nitrided model Ni-Cr and Fe-Cr base alloys: moderately better than untreated metal ⁸

Nitrided <u>Foils</u> Exhibit Good Corrosion Resistance Under Simulated Aggressive Cathode Conditions

Polarization Evaluation at 70°C in 1M H₂SO₄+ 2 ppm F⁻ held at +0.84V vs SHE, aerated

•Current densities for nitrided Fe-20Cr-4V foil higher than model entrided Ni-Cr/Fe-Cr alloys, still improved over untreated metal

Nitridation Significantly Reduces Foil Interfacial Contact Resistance (ICR)

- •7h polarization of nitrided foils under simulated aggressive anode and cathode conditions raised ICR beyond target value -remains order of magnitude lower than untreated metal
- •7h polarized nitrided model NiCr/FeCr alloys and nitrided Fe-20Cr-4V sheet material showed only small ICR increases¹⁰

Continuous Cr-Nitride Surfaces Formed on Model Nitrided Ni-50Cr and Fe-27Cr-6V Alloys

•Nitrided Fe-27Cr-6V Cr-nitride surface formed in mixed nitrogen/oxygen environment over 24 h nitriding cycle -long cycle and mixed N₂/O₂ environment not practical for scale up

-used to understand and develop controllable pre-oxidation/nitridation approach with short nitriding cycles to meet cost targets

-structures shown above from sheet material

V_xN Dispersed in Cr_2O_3 Formed on Fe-20Cr-4V Sheet and Foils

Cross-Section TEM Analysis of Pre-Oxidized/Nitrided Fe-20Cr-4V

<u>Through thickness V_xN paths</u> but no continuous Cr_xN as with model alloys
 Consequence of pre-oxidation/nitridation cycle to meet cost goals

Pre-Oxidized/Nitrided Fe-20Cr-4V Foils Tend to Exhibit Less N at Surface than Sheet Material

AES Depth Profile of Pre-Oxidized/Nitrided Fe-20Cr-4V

Foils more sensitive to O₂ impurities in N₂-4H₂, more oxide at surface -foil surface finish and microstructure/diffusion effect?
Foils show small surface Fe peak-not observed in sheet material -may contribute to observed ICR increase on polarization

Continuous Cr-Oxide Regions Formed on Pre-Oxidized/Nitrided 2205

Cross-Section TEM Analysis of Pre-Oxidized/Nitrided 2205 Two Runs/Similar Conditions

Single-Cell Fuel Cell Testing of Nitrided Foils Benchmarked to Stainless Steels and Graphite

•Operating conditions: 80°C, 25 psig, stoichiometry 2.5O₂/1.25H₂ -performance curves (V-I):0.9-0.4V, 0.05V steps, 20 min./step, repeat 3x

 Serpentine ~15 cm² active area stamped foils for metals, machined graphite block of similar flow-field design

•Significant learning curve for stamped foil design and testing ¹⁵

Good Initial Single-Cell Fuel Cell Performance For Nitrided Fe-20Cr-4V

Initial V-I Curves Using 50 micron MEA (0.8 mg Pt/cm²)

Nitrided Fe-20Cr-4V exhibited best behavior (some discoloration cathode side)
 Nitrided 2205 exhibited poor behavior- continuous oxide areas suspected
 MEA failure at gas inlet/outlet due to foil/MEA design integration issues

MEA Durability Issue Solved by Moving to Thicker MEA

V-I Curves from 700 h Test of Untreated 904L Foil Using 125 micron MEA (0.5 mg/cm² Pt)

•Some discoloration on anode-side plate, MEA will be analyzed by XRF

•175 micron MEA selected for ~750-1000 h durability studies

Cyclic Durability Tests Underway Using 175 Micron MEA with Integrated GDL

Initial V-I Curves Using 175 micron MEA (0.5 mg/cm² Pt)

- •Significant initial performance advantage of nitrided Fe-20Cr-4V over that of untreated 904L stainless steel (ICR effect?)
- •Machined flow-fields may be source of lower graphite performance
- •Durability assessed by V-I curves and MEA analysis for metal ions

Summary

 Nitridation of stainless steel foils using short pre-oxidation and nitriding cycle yielded mixed nitride/oxide surface layer
 -significant improvement in ICR and corrosion behavior compared to untreated stainless steel foils
 -not as protective as continuous Cr-nitride layers formed on model alloys (some concern for ICR and cathode-side corrosion)

•Promising initial performance of stamped and nitrided Fe-20Cr-4V in cyclic single-cell fuel cell tests

•Durability studies of stamped and nitrided foils benchmarked to untreated stainless steels and graphite underway

-Go/no go decision at end of FY09

-Criteria are comparable resistivity and performance to graphite, no more than 5 ppm MEA metal ions beyond MEA from graphite test

Future Work

- Incorporation of nitrided Fe-23Cr-4V foil into test matrix -higher Cr may improve surface ICR and corrosion resistance
- Evaluation of commercial stainless steel foil compositions containing Ti and related strong nitride-forming additions -goal would be to form similar through thickness nitride/Cr₂O₃ surface to nitrided Fe-20Cr-4V (commercial alloys more accessible to developers)
- •Evaluation of rapid heating/cooling using plasma arc lamp and related quartz infrared lamps for nitriding

-fast heat/cool may favor more nitride-rich surface, minimize Fe -fast heat/cool minimizes brittle σ phase formation in higher Cr alloys which may yield more corrosion-resistant nitrided surfaces -lower cost nitriding approach

•If go/no go milestone reached move to full-size plates and stack testing in FY 2010

Additional Slides

20 Cr Ferritics Performed Well in GenCell Stamping Assessment

Alloy	Description	Flow-Field Stampability (channel depth/foil thick)	
444	Fe-18Cr-2Mo Ferritic	0	6
316L	Fe-18Cr- 12Ni Austenitic	pin	5.25
904L	Fe-20Cr-25Ni-5Mo Aust.	am	5.25
Fe-15Cr-10Ni-3V	Near-Austenitic	St	5.25
Fe-20Cr-4V Ferritic		-Field	4.38
Fe-20Cr-2V-5Ni	Duplex	N O	4.25
Fe-20Cr-2V	Ferritic	L L	4.13
2205	Fe-22Cr-5Ni-3Mo Duplx.	ette	3.75
E-brite	Fe-26Cr-1Mo Ferritic	Be	2.5

•18 cm² active area parallel flow-field stamping of commercial and developmental stainless steel foils ²⁶

Stamped Fe-Cr-V Alloys Can Meet \$5/kW Transportation Cost Goals

2006 GenCell Cost Estimates for Stamped Bipolar Plates (<u>Nitriding Costs Not Included</u>)

Foil	Density	Bipolar Plate Cost (\$/kW)		
Thick. (in)	<u>kg/kW</u>	<u>\$3/lb Alloy</u>	<u>\$5/lb Alloy</u>	<u>\$7/Ib Alloy</u>
0.002	0.26	\$2.31	\$3.47	\$4.58
0.004	0.38	\$3.15	\$4.26	\$6.57
0.008	0.64	\$4.86	\$7.69	\$10.51

•Higher-Cr ferritic commercial alloy foils ~\$3-7/lb :

- E-BRITE® (Fe-26Cr-1Mo wt.%): \$5-7/lb commercial price for foil
- Alloy 444 (Fe-18Cr-2Mo wt.%): \$3-5/lb commercial price for foil
- Above alloys likely comparable to Fe-Cr-V alloy range

•Alloy/stamping costs leaves < ~75 cents/kW for nitriding costs

75 cents/kW Nitriding Costs Potentially Feasible

Preliminary Cost Analysis by B. James, Directed Technologies

Furnace Plate Spacing, cm

•Automated, step-continuous conventional nitriding system at 500,000 systems per year, mark up not included

-keys are short nitriding cycle and high furnace plate stacking density

•Nitriding by pulsed plasma arc lamp in range of 16-44 cents/kW -feasibility to nitride Ti in "seconds" previously demonstrated