

Low Cost, Durable Seals For PEM Fuel Cells

Jason Parsons UTC Power Corporation May 21, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>Timeline</u>

- Start: Apr 2007
- End: Sept 2009
- 70% Complete

Barriers

- A: Fuel cell seal durability
- Fuel cell seal cost is also being evaluated

Budget

- Total Project Funding
 - DOE: \$1,980K
 - Contractor: \$1,320K
- Funding Received in FY08
 - \$600K
- Funding for FY09
 - \$630K

Partners

Collaborators

Objectives – Relevance to DOE Targets

<u>The Goal:</u> Develop a low cost, non-silicone, durable seal material and sealing techniques amenable to high volume manufacture of PEM cell stacks.

DOE Targets/Goals/Objectives	Project Goals
DurabilityBarrier ATransportation: 5,000 hrStationary: 40,000 hr	 Durability 4000 hr bulk material testing at up to 90 °C Up to 4000 hr air aging and CSR at up to 120 °C 4000 hr accelerated out-of-cell testing 2000 hr in-cell verification testing
Low CostBarrier B- Barrier not explicitly identified for seals- DTI study suggests target of \$3.91/kW @ 500k stacks/year- Fuel Cell Tech Team suggests \$2.00/kW @ 500k stacks/year	Low Cost - Evaluate seal material and production method against suggested targets

Material selection concept

Chemical Stress **Material Category** Processibility Low Cost Relaxation Stability LIM Silicone + + Fluoropolymers 0 + 0 **Existing Hydrocarbons** + + 0 0 LIM Hydrocarbon + ÷ ÷ ÷ **O** Fair + Excellent - Poor *LIM = Liquid Injection Moldable

Silicones are know to breakdown and chemically contaminate the fuel cell

Source: M. Schulze, et. al., Journal of Power Sources 127 (2004) 222-229

Hydrocarbon elastomers can retain load better than silicones in PEM environments

04GO14053, Merit Review, PEM Cell Stack Activities, 2005

Approach

A United Technologies Company

FY08 / FY09 Milestones - Revised

Milestones or Go/No-Go Decision	Progress Notes	% Comp
Go/No-Go: Down-select candidate to carry forward for in-cell testing	FCS2 chosen for validation	100
Milestone: Material characterization report for the leading candidate material	Most required data has been collected	90
Go/No-Go: Full-size prototype design selection	No-Go for 1 st design choice, evaluating 2 nd choice and a low-risk alternative	75
Milestone: 4000 hr bulk material testing	Substantial bulk material testing completed.	80
Milestone: 4000 hr accelerated out-of- cell testing	Equipment fabricated and/or acquired; Check-out complete; Sub-scale seal testing ready to begin	10
Milestone: 2000 hr In-Cell verification testing	Waiting for full-size parts	0

Summary of Materials

Synthesis,

Compounding,

Characterization

Most promising candidates released for additional evaluation

Iteration	Description
FCS0	One-part material meeting all minimum material requirements
FCS1	Two-part material with improved curing and mechanical characteristics
FCS2	One-part material based on FCS1; purpose: to eliminate the potential for shot-to-shot mixing variability in the production of SMORS
FCS3	One-part material with improved tear strength and elongation; expected to meet all program requirements (not yet released)

٠

Go

No-Go

Go)

No-Go

Henkel

Material properties vs. specification

- All three material candidates meet or exceed all minimum project goals
- In terms of key initial properties, all three also meet or exceed most of the ultimate project goals

Henkel LIM Hydrocarbon Elastomer Property Table for DOE							
Droportion	Project Re	quirements	FOSO	ECS1	ECSO		
Fiopenties	Minimum Ultimate		1030	1051	1002		
Process Properties							
LIM processable	Yes	Yes	Yes	Yes	Yes		
Viscosity @ room temperature (cPs)	<= 700,000	<= 600,000	~ 500,000	~ 543,000	~ 543,000		
Mold temperature (°C)	< 135	<= 110	120 to 130	120 to 130	120 to 130		
Mold time (second)	<= 400 <= 60		60 to 120*	60 to 120*	60 to 120*		
Mechanical Propreties							
Hardness (Shore A)	15 to 68	30 to 55	31	30	30		
100% Modulus (Mpa)	0.25 to 3.5	1 to 2.5	0.75	0.68	0.69		
Tensile strength (Mpa)	>= 0.5	>= 0.8	1.3	1.3	1.1		
Elongatin (%)	> 125	> 150	163	171	160		
Tear strength Die C (kN/m)	>= 2.7	>= 5.0	3.7	3.7	3.9		
Environmental Requirements							
Temperature resistance (°C)	-40 to 85	-40 to 90	-40 to 90	-40 to 90	-40 to 120		
Notes							
*cure schedule: 120 second in the mold @ 120°C and then 1 hour post cure @ 130°C							

Green: meets minimum & ultimate requirements Yellow: meets minumum requirements Red: below minimum requirements

Accomplishments and Progress FCS1 6600 hr fluid immersion test @ 90C

Compatibility testing

DOE Hydrogen Program

Overall, one of the cleanest seal materials tested by UTC Power

Organic Migration and Deposition					
Tost Paramotor	Result				
iest raidilletei	FCS0	FCS1			
Vapor Phase Deposition	None detected				
Surface Migration	Contact transfer only – no migration detected				

DI Water Immersion							
Test Parameter	Result – FCS0 / FCS1						
		500hr	1000hr				
Surface Tension by Tensiometer	(% change)	3 / -	1 / -				
Total Organic Carbon	(ppm)	-/-	10 / —				
Total Inorganic Content by IC/ICP-A	2/3	2 /					
Volatile Organic Content by GC-MS	(ppm)	-/-	0 /				
рН		5.7 / 5.8	-/-				
Conductivity	(µS/cm)	4/3	-/-				

DOE Hydrogen Program

Accomplishments and Progress 10000 hr ex-situ durability test - Sealing

- Compression Stress Relaxation (CSR)
 - 10,000 Hour Durability
 - No visible signs of degradation
 - Less than 20% decay
- Sealing Force:
 - 25% compression, 0.5 MPa
- Henkel Technology:
 - Proprietary resin & cross-linker
 - Benefits stable sealing force & low compression set
 - Automotive operating lifetime

CSR sample

DOE Hydrogen Program

Accomplishments and Progress Additional testing of FCS1 @ T above 90 °C

- **Compression Stress Relaxation**
 - 4500 Hour Durability @ 120 °C
 - Less than 10% decay
- Compression Set at 120 °C
 - Less than 10% (1000 hrs)
- Thermal stability
 - Air-aging @ 150 °C
 - FCS1 and three EPDM-based fuel cell seal materials (A, B, & C) were compared
 - FCS1 exhibits the best thermal stability and showed no sign of oxidation after more than 1500 hours.

Accomplishments and Progress Full-Size proto-type development

27

- Integrated Molded Seal (IMS) MEA
 - Benefit: Addresses cost by combining
 - Unitization of the MEA
 - Molding of the seal
 - Placement of the sealing features
 - Multiple designs considered
 - Preferred Design: low-profile seal (1st Choice)
 - Rejected based on FEA modeling and tolerance analysis
 - Alternative Design (2nd Choice)
 - Taller seal beads mitigate effects of tolerance stack-up
 - FEA evaluation and mold-flow analysis underway
- Parallel Effort
 - In-cell evaluation of seals over-molded on Polyethylene Naphthalate (PEN) film
 - Benefit: Industry alignment

Accomplishments and Progress Subscale seal testing

- 272
- DOE Hydrogen Program

- Sub-scale Molded O-ring Seals (SMORS)
 - Seal liquid injection molded over substrate by FNGP
 - Used for compression and leak testing
 - Single bead facilitates detection of leaks
 - Cross-section mimics full-size part
 - Used to verify results obtained in bulk material tests

Progress

- Initial CSR test by VT showed higher than expected sealing force decay
- Analysis by Henkel revealed the causes
 - Over-compression of the porous substrate
 - Differences between the ideal FEA model and the molded parts
 - Sub-optimal cure

Solution & results

- Cure (1 min @ 120 °C) & post cure to achieve short cycle time and optimal cure.
- With 15% compression, measured sealing pressure is three times the maximum fuel cell design pressure and effects of the GDL are negated.
- Resulting CSR tests on SMORS show the expected result of less than 10% load decay over 800 hrs.

Testing at VT - Overview

DOE Hydrogen Program

Test	Standard	Equipment	Specimen	Properties of Interest		
Tensile	ASTM D638	Instron MicroTester	Dogbone	Tensile strength, Elongation to break		
Tear	ASTM D624 Type T	Instron MicroTester	Rectangular Tear Sample	Seal material resistance to crack propagation		
Mass Uptake	ASTM D570	Mettler Toledo Analytical Balance	Cylindrical Disks	Diffusion Coefficient, Solubility		
Compression Stress Relaxation	-	Custom Designed Jig	SMORS	Calculation of sealing force in the seal in various environments and temperatures		
Leak Test	-	Custom Designed Fixture	SMORS	Leak properties in various environments at different temperatures		

Tear

Mass Uptake

CSR

Leak Test

Tensile

DOE Hydrogen Program

Testing at VT - Degradation using Fenton's Reagent

% Weight Gain

Conditions:

- •T=90 °C
- 1 and 10% Hydrogen peroxide30 ppm Iron(II) sulfateheptahydrate

Number of Days

- Materials selection and development
 - Complete work on FCS3 (increase modulus, elongation, and tear strength)
- Out-of-Cell testing
 - Execute 4000 hr accelerated testing on SMORS
 - Verify 4000 hr aging results on FCS2 bulk samples
 - FCS3 testing up to 3000 hrs
 - Continue benchmarking against other materials
- Full-size prototype development
 - Evaluation of alternative seal design for Go/No-Go
 - Over-mold seals on PEN for full-size in-cell evaluation
 - Perform additional molding trials
 - Incorporate any lessons learned from the alternative seal design
- <u>In-cell testing</u>
 - Screen sub-scale MEAs with molded seals
 - Testing for seal adhesion, penetration, and specific interactions
 - Execute 2000 hr verification testing using full-size seals

- Project Goal
 - Develop a durable and low-cost PEM fuel cell seal material
- Materials selection and development
 - Material properties for available candidates meet most ultimate project goals
 - FCS3 expected to meet all project goals
- Out-of-cell testing
 - Initial data from chemical and mechanical durability tests on sheet stock and sub-scale parts are encouraging
 - More than 4000 hours of testing accumulated
 - Over 10,000 hours on FCS0
 - 4000 hr performance to be verified on SMORS
 - Nearly 5000 hours in air at 120C demonstrated
- In-cell testing
 - Full-size parts for in-cell testing on schedule for completion by the project end date

Acknowledgements

- UTC Power
 - George Roberts
 - Bhavana Bommarajpeta
- Henkel
 - Dr. Matthew Burdzy
 - Dr. Yanbing Wang
 - Dr. Younghui Zhang

- Freudenberg NOK
 - Mark Belchuk
 - Ronnie Adams
- Virginia Tech
 - Dr. David Dillard
 - Hitendra Singh PhD Candidate
 - Dr. John Dillard
 - Dr. Robert Moore
 - Dr. Wonho Kim Visiting Professor
 - Gilles Divoux PhD Candidate
 - Dr. Scott Case

Additional Slides

Accomplishments and Progress FCS1 6600 hr immersion test

A United Technologies Company

Henkel Hydrocarbon Heat Cured Elastomer FCS1 Condition Initial 1000 h 2000 h 3300 h Change @ 6600 h Property 6600 h Hardness Shore A 29 29 29 30 28 2 point Change @ 6600h Specific Gravity 0.979 0.980 0.981 0.981 0.982 0.31% Tensile Strength (MPa) 1.49 1.26 1.34 1.32 1.26 -15.44% Water @ 90°C 100% Modulus (MPa) 0.61 0.55 0.60 0.61 0.60 -1.48% Hardness. Elongation (%) 206 190 200 190 188 -8.74% 1 to 6 point Weight change (%) 0% 1.27% 1.28% 1.84% 1.90% 1.90% Volume change (%) 0% 1.17% 1.04% 1.67% 1.63% 1.63% increase Hardness Shore A 28 29 30 29 30 2 point Specific Gravity 0.979 0.980 0.982 0.981 0.982 0.31% Tensile Strength (MPa) 1.49 1.30 1.23 1.29 1.26 -15.44% • Weight/Volume: pH2 H2SO4 + 100 100% Modulus (MPa) 0.61 0.63 0.62 0.64 0.63 3.45% ppm HF- 🛞 90°C -1 to 2% Elongation (%) 206 189 191 196 194 -5.83% Weight change (%) 0% 1.21% 1.41% 1.73% 1.79% 1.79% 0% 1.13% 1.13% 1.52% Volume change (%) 1.52% 1.52% Hardness Shore A •Tensile/Elongation: 28 29 30 30 29 1 point Specific Gravity 0.979 0.980 0.982 0.982 0.983 0.41% -15 to 8% Tensile Strength (MPa) 1.47 1.39 1.43 1.40 -6.04% 1.49 Water + E. Glycol 100% Modulus (MPa) 0.61 0.64 0.61 0.62 0.65 6.73% (50% v/v) @ 90°C Elongation (%) 206 205 204 195 199 -3.40% Weight change (%) 0% -0.18% 0.17% 0.49% 2.07% 2.07% 0.17% Volume change (%) 0% -0.31% -0.12% 1.65% 1.65% Hardness (Duro A) 28 30 34 34 34 6 point Specific gravity 0.979 0.977 0.979 0.978 0.979 0.00% Tensile strength (MPa) 1.49 1.58 1.53 1.66 1.61 8.05% 110°C (air) 100% Modulus (MPa) 0.61 0.67 0.85 0.78 0.85 39.57% Elongation (%) 206 193 170 186 177 -14.08% Weight change (%) 0% -1.27% -1.21% -1.25% -1.23% -1.23% Volume change (%) 0% -1.10% -1.18% -1.19% -1.24% -1.24%

Excellent mechanical, weight, and volume stability

6,600 hr ex-situ durability test – H₂ stability

DOE Hydrogen Program

Test Specimens: X305543

- # Samples: ASTM D 638 Die IV Dog Bones 13 mm OD x 6.5mm H plugs
- Conditions: Temperature = 90°C Hydrogen = 15 psi @ 23°C Water = 100 ml ASTM D 1193 Type 1 Water

Test Methods:	Tensile Strength	ASTM D 412 (ASTM D 638 Type IV Die)	Average of 5 specimens/ test point
	100% Modulus	ASTM D 412 (ASTM D 638 Type IV Die)	Average of 5 specimens/ test point
	% Elongation @ Break	ASTM D 412 (ASTM D 638 Type IV Die)	Average of 5 specimens/ test point
	Hardness (Shore A)	ASTM D 2240	Average of 3 replicates per specimen/ 5 specimens
	% Weight Change	ASTM D 471	Average of 5 specimens
	% Volume Change	ASTM D 471	Average of 5 specimens
	Density	ASTM D 471	Average of 5 specimens

Property Summary Table Immersion @ 90°C in Hydrogen (15psi)									
			0 Hours	100 Hours	500 Hours	1000 Hours	2000 Hours	3390 Hours	6652 Hours
Property	Method	Product	Average	Average	Average	Average	Average	Average	Average
Tensile Strength (Mpa)	ASTM D 412 (ASTM D 638 Type IV Die)	X305543	1.4	1.4	1.3	1.3	1.4	1.5	1.3
100% Modulus (MPa)	ASTM D 412 (ASTM D 638 Type IV Die)	X305543	0.7	0.8	0.9	0.9	0.9	0.9	0.9
% Elongation @ Break	ASTM D 412 (ASTM D 638 Type IV Die)	X305543	177	1 6 2	143	146	143	156	142
Hardness (Shore A)	ASTM D 2240	X305543	36	38	38	38	38	38	38
% Weight Change	ASTM D 471	X305543	0%	0.27%	0.38%	0.36%	0.26%	0.46%	0.62%
% Volume Change	ASTM D 471	X305543	0%	-0.93%	-1. 09%	-2.05%	-0.11%	-1.01%	-0.43%
Density (g/cc)	ASTM D 471	X305543	0.963	0.975	0.978	0.987	0.967	0.978	0.974

DOE Hydrogen Program

* Based upon Relaxation Test @ multiple temperatures using Arrhenius procedures

Elastocon CSR Equipment at Henkel

- Continuous CSR
- 80, 100, and 120 °C
- 3 Cells / 3 Temperatures
- Hot air
- 50% sealing force decay
- Sample Life-time Estimation*

Proposed Lifetime Prediction Approach at VT

- Primary method:
 - Compression stress relaxation (CSR)
 experiments over a range of environmental conditions using custom fixture.
- Preparation of Arrhenius plots using The Arrhenius Equation
 - [ISO 11346. Rubber, Vulcanized or Thermoplastic Estimation of Life-time and Maximum Temperature of Use from an Arrhenius plot. 1997]

CSR Fixture: Original & Modified Design

DOE Hydrogen Program

Original Design

- <u>Advantage</u>: Tracking of both compressive properties and load relaxation over time in identical environments and one rig
- <u>Disadvantage</u>: Intermittent measurements introduce noise when working with low durometer seals

Modified Design

- <u>Advantage</u>: Continuous load relaxation measurement greatly reduces noise in the data
- <u>Disadvantage</u>: Samples used for tracking changes in compressive properties will need to be aged separately

Trouser Tear: Test Procedure

- Properties: Critical tear energy, G_{cr}
- Specimen Type: 2mm thick tear samples cut using ASTM D624 Type T Die
- Test Method: Trouser tear according to ASTM D624
- Loading Rate: 2 to 500 mm/min
- Load Measurement: Instron[®] 5865 outfitted with ± 1 kN load cell
- Material: FCS1

27

Trouser Tear: Data acquisition method

AND STATE UNIVERSITY

Trouser Tear: Predictions

 $J = \int_{\Gamma} w \cdot dy - T_i \frac{\partial u_i}{\partial r} \cdot ds$

Threshold value of tearing energy can be coupled with FEA to predict whether a crack, once formed, will propagate in the seal and at what rate.

where $w = \int \sigma_{ij} \cdot d\varepsilon_{ij}$ is the strain energy density

 $T_i = \sigma_{ii} \cdot n_i$ is the traction vector

 Γ is an arbitrary contour around the tip of the crack,

n is the unit vector normal to Γ

 σ , ϵ , and u are the stress, strain, and displacement field respectively.

Crack Growth Rate, Ra_T (m/s)