

"Solid Oxide Fuel Cell Development for Auxiliary Power in Heavy Duty Vehicle Applications"

Mr. Gary D. Blake DELPHI May 22nd, 2009

Sponsor: U.S. DOE – Hydrogen, Fuel Cells and Infrastructure Technologies

DOE Technical Development Manager: Terry Payne

DOE Project Manager: David Peterson, Ph.D.

Partners: PACCAR, Volvo Trucks North America (VTNA), & Electricore

This work is supporting in part by the U.S. DOE under Cooperative Agreement

DE-FC36-04GO14319 Project ID: FC_44_Blake

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Agenda

- Overview
- Objectives
- Milestones
- Approach
- Technical Accomplishments and Progress
- Future Work
- Summary

Overview

Timeline

- September 2004
- April 2010

(Project was on 18 month hold from 2006-2007)

70% Complete

Budget

- Total project funding
 - DOE \$3,000,000
 - Delphi \$1,750,000
- \$1,213,274 received in CY08
- \$ 655,653 planned for CY09

Barriers

- Barriers addressed:
 - Sulfur Remediation
 - Reformer Operation
 - Stack Sensitivity
 - Carbon Issues
 - Catalyst plugging
 - Combustion Start plugging
 - System Pre-combustion
 - System Electrical Integration

Partners

- Paccar and Volvo Truck
- Electricore Inc.

Relevance - Solid Oxide Fuel Cells Market Opportunity

Recreational Vehicles Diesel, LPG

Truck and Trailer Refrigeration Diesel

US Military JP-8

MARKET DERIVATIVES

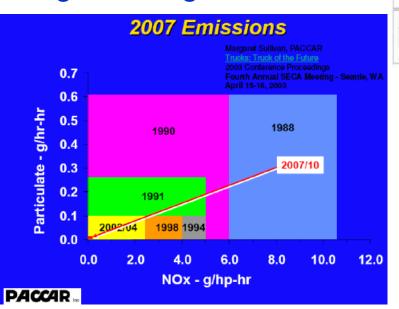
European mCHP & CHCP **Natural Gas**

US Stationary – APU & CHPCommercial Power Natural Gas, LPG

Natural Gas

FutureGen Powerplant Coal Gas

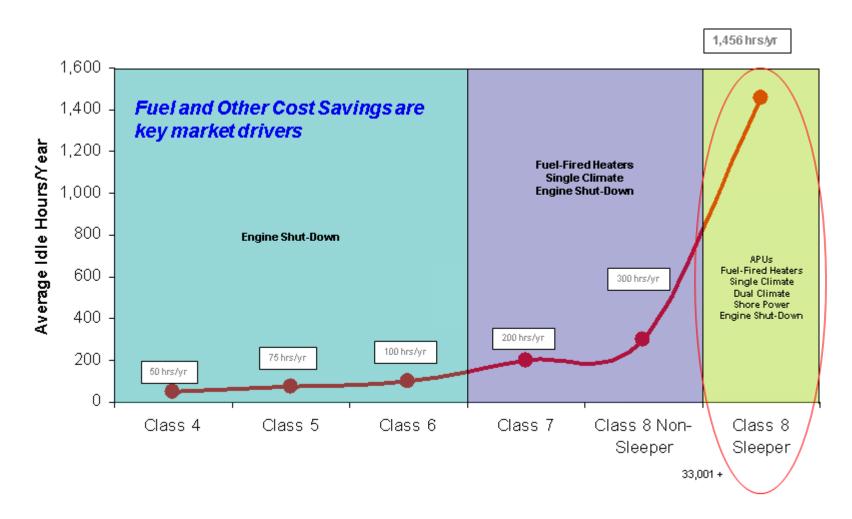
Heavy Duty Truck represents Delphi's target initial development & application



Relevance - Heavy Duty Truck Market Drivers

Mission & Anti-idling Regulations

Annually, long-duration truck and locomotive engine idling...


... Emits 11-million tons of CO₂, 200,000 tons of NOx, and 5,000 tons of particulate matter

... Consumes >1-billion gallons of diesel fuel

Relevance - Heavy Duty Truck Market Idling Time

Relevance - Heavy Duty Truck Market Drivers

Increasing Cab Electrical Loads

OEM load profiles identify potential power requirements of 2.5kW and 4.0kW respectively

In-Cab Appliances Include

- CB Radios
- Cell Phones
- Televisions
- Refrigerators
- Stereos
- Lamps
- DVD / VCR Player
- Computer
- Microwave
- Coffee Maker
- Electric Blankets
- Electric AC / Heater

Relevance - Objectives

Complete a 48-month contract with the DOE EERE:

1.Develop APU system requirements and concepts with major truck OEMs input

- 2.Design, develop and test the needed subsystems for the approved concept
 - Verification testing of brass-board APU system
 - 2. Form and packaging design
 - 3. Review Phase 2 system specification

3.Build and demonstrate a diesel fueled truck APU system to the DOE

	DOE 2010	DOE 2015	Delphi
	APU	APU	Proposed
	Technical	Technical	SOFC APU
	Targets	Targets	Targets
System cycles #	150	250	150
Net System Power (kW)	≤ 5	≤ 5	3
Specific Power (W/kg)	25	25	25
Power Density (W/L)	25	25	25
Net System Efficiency	35.0%	40.0%	38.0%
Durability (hrs)	20,000	35,000	20,000
Start Up Time (min)	15-30	15-30	60
Factory Cost (\$/kWe)	\$1,000	\$500	\$1,000
Fuel	US '07	US '07	US '07
	Diesel	Diesel	Diesel

DOE/Delphi SOFC Key Performance Metrics

Meeting these objectives will dramatically increase both the technical and commercial viability of fuel cell APU technology

Approach - Milestones

Month/Year	Milestone and Go/No-Go Decisions	Complete
April 2008	Sub-Milestone Review #2: This milestone focused on the APU design and layout; and Developing the subsystem requirements document and development plan.	100%
Sep. 2008	Sub-Milestone Review #3: This milestone focused on the SOFC APU hardware design and build; Subsystem test fixture hardware development.	100%
April 2009 (As of March 20 th)	Phase 2: Critical Milestone #3 Hardware Design & Development This milestone focused on completion of the SOFC APU hardware build and procurement; Initiation of subsystem hardware testing and design iterations.	80%
August 2009 (As of March 20 th)	Phase 2 Milestone #4 System & Subsystem Design Progress This milestone includes subsystem testing and controls development; Initial SOFC APU system brass board integration and design iteration.	25%

Approach

Phase 1: OEM input Collection

- Delphi works with PACCAR and VTNA to understand the APU demands from the OEM point of view
- Information has been collected and is compiled into Delphi Requirements

Phase 2: Design/Build/Development

- 2008 Phase 2 effort is design and component verification period
- Late Phase 2 work will include a brass-board system build and test (2009)
- OEM involvement will be reduced until Phase 3

Phase 3: System Integration & Test

- In 2010, system development will use OEM input for test planning
- Conduct bench top testing
- Add in "real-world" profiles from the changing APU marketplace

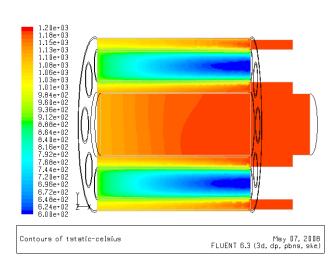
Technical Accomplishments and Progress

System Performance Design Analysis

		SPU 1E GAP	DPS 3000 ENHANCEMENT
Power	Power Level (3 kW net)	60 cells (105 cm ²) - 1-1.5 kW Stack cooling limited	40 cells (270 cm ²) - 3-4 kW Improved cooling environment around stacks
ency	Parasitic power losses	High parasitic loads due to high- pressure drop components and high stack cooling airflow required	Opportunities for reduced pressure drop and improved stack cooling.
System Efficiency	Fuel Processing Efficiency		Improved efficiency with "Endothermic" reformer and high recycle flow
	Heat Loss	•	Increased insulation thickness and thermal component compartmentalization
Sulfur	Fuel Compatibility	Zero sulfur Diesel fuel restricted (no reformate desulfurizer)	US 07 Ultra-Low-Sulfur Diesel compatible (internal, integrated reformate desulfurizer)

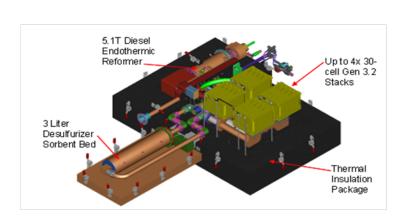
Technical Accomplishments and Progress

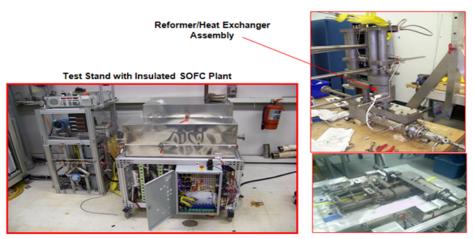
Fuel Reformer Development


- Delphi is developing reforming technology for Diesel/JP-8 SOFC applications, by modifying our existing Natural Gas reformer
- The Next Generation design is a Recycle Based Endothermic Reformer:

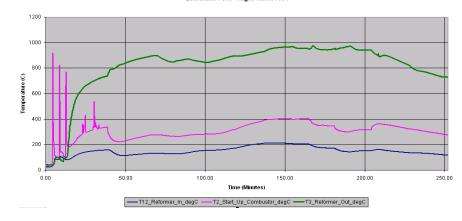
Next Generation Endothermic Reformer

Ceramic has poor HT, not suitable for design intent. Requires Microchannel design (tubular or planar).





Technical Accomplishments and Progress


DPS3000D Development Test Chassis

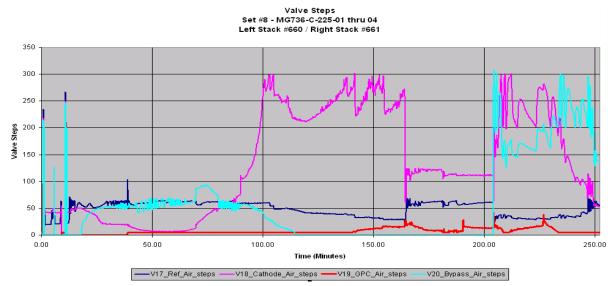
Reformer Temperatures Set #8 - MG736-C-225-01 thru 04 Left Stack #660 / Right Stack #661

- Integration of Development Endothermic Reformer
- •Integration of gaseous Desulfurizer
- Initial debug of updated APU Software
- •Testing of SOFC APU running on US07 Diesel

Technical Accomplishments and Progress

<u>Major Design Efforts in Diesel APU Development – DPS3000D</u>

- Next Generation Stack Design with increase active area
- Enhanced Thermal Energy Management Controls
- Endothermic Reformer Integration
- Integrated Reformate Desulfurizer with Serviceability Enhancements
- Next Generation 12v Blower Design
- Multi-function Heat Exchanger
- Fully integrated turnkey system
- Simplified Integrated Component Manifold

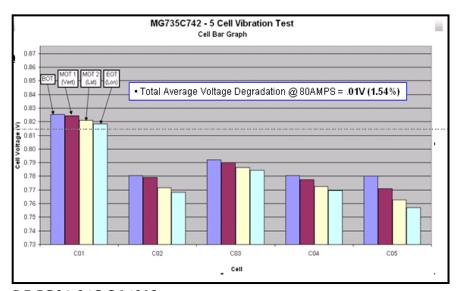


Technical Accomplishments and Progress

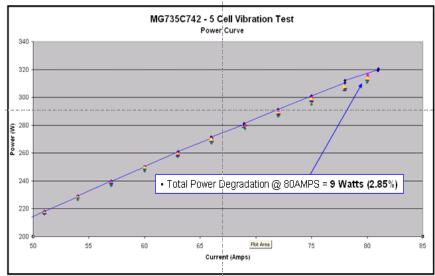
Truck Demo Chassis Test

Modified Natural Gas Platform to operate on Diesel Fuel

- Introduction of SOFC subsystem to OEM
- Better understand packaging and vehicle integration issues
- Initial Testing of basic operational parameters
- First testing of SOFC in a 'non-lab' environment
- Identify system Safety and Diagnostic concerns
- Better understand possible vehicle interface



Technical Accomplishments and Progress


Perform Accelerated Vibration Durability Test

Stack Vibration Testing:

- Test Performed was a 3 mode Longitudinal, Lateral, Vertical, 2 hr per mode random vibration test, total test time was 6 hrs. Test acceleration is equal to 100k vehicle miles.
- 93% high usage class 8 truck driver accumulates ~ 250k miles/year (ATRI survey results)
- Validation Milestone ~ 750k miles in 3 years of operation

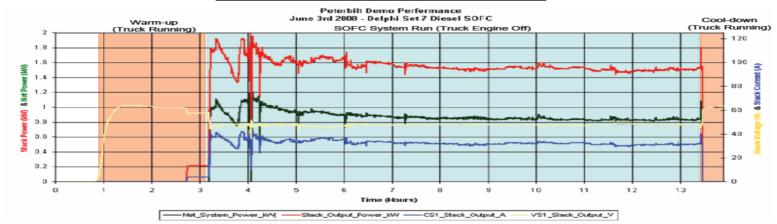
Technical Accomplishments and Progress

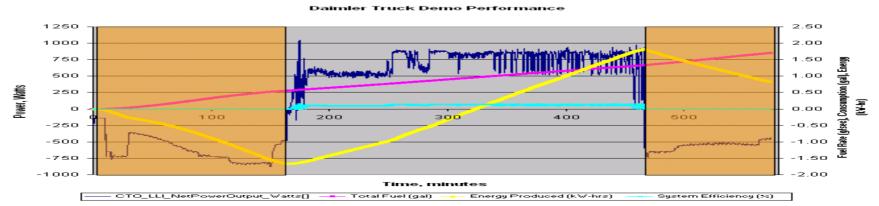
PACCAR / Peterbilt

June 2008 Denton, Texas

Daimler / Freightliner

November 2008 Portland, Oregon





Technical Accomplishments and Progress

Steady State Performance

<u> Transient Performance</u>

Collaborations

Delphi has teamed with OEM's PACCAR Incorporated and Volvo Trucks North America (VTNA) to define system level requirements for a Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for the commercial trucking industry. As well as Electricore Inc, to help with the overall program management

VOLVO

Volvo Trucks North America (VTNA), Greensboro, NC

PACCAR, Mt. Vernon, WA

Electricore Inc, Valencia, CA

Future Work

2009

- Finish Subsystem Testing and Development Iterations
- Conduct 24 Month Critical Decision Milestone Review (April 2009)
- Complete System Module Testing and Development
- Phase 2 complete Conduct Milestone Review (August 2009)
- Begin Full SOFC APU System Testing

2010

- Build Commercial Packaged SOFC APU
- Demo Test, 24 hour truck user profile using battery interface and vehicle simulation

Summary

- Primary Market Drivers
 - Anti-Idling Legislation
 - Emissions Legislation
 - Increasing Heavy Duty Truck Cab Electrical Loads
 - Transportation Fuel Cost
- Completed 3rd and 4th Quarter On-Truck Installation / Demonstration for Continued Development of APU Requirements
 - Using a modified Natural Gas APU in an Integration Enclosure
- Initiated Component Build and Testing of SOFC DPS3000D subsystems
- We are on Target for Meeting Timing and Budget
- Delphi is Committed to Introducing SOFC Diesel Technology in Full Scale Production for Heavy Duty Truck Applications