

Solid Acid Fuel Cell Stack for APU Applications

Hau H. Duong Superprotonic, Inc. May 22, 2009

Project ID# fc_45_duong

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

SUPERPROTONIC

Timeline

- Start July 2008
- Finish July 2010
- 40% complete

Budget

- Total project funding
 - ▶ DOE \$492,000
 - ▶ SPI cost share \$123,000
- DOE funding received for FY'08
 - ▶ \$492,000

Collaborator

- California Institute of Technology
- Richard Mistler, Inc.

Barriers

- Barriers
 - A. Durability
 - Tolerance to reformed fuel
 - Operating hours
 - B. Cost
 - MEA fabrication
 - Catalysts
 - C. Performance

Technical Targets

	Stack	System*
Power (W)	300	3000
Durability (h)	2000	2000
Efficiency (%LHV)	55	25
CO tolerance (%)	10	N/A
H ₂ S tolerance (ppbv)	50	N/A
Specific power (W/kg)	55	TBD
Power density (W/L)	160	TBD
Cost (\$/kW _e)	300	800

* System projections based on conceptual design

Introduction to SAFC

Solid Acid Electrolytes Fundamentals

- Intermediate salts and acids
 - ▶ 1Cs3PO4+ 2H3PO4 \rightarrow 3CsH2PO4
 - General Formula: MxHy(XO4)z
 - M = Cs, Rb, K, NH4, TI
 - X = S, Se, P, As
- Physically similar to salts
 - Brittle
 - Water soluble
- Properties
 - Solid state proton conductivity
 - Impermeable

Cesium Dihydrogen Phosphate *Electrical properties*

- Superprotonic phase transition
 - ► *T*_{SP} = 231°C
 - Proton conductivity jump

< 8.5 x 10⁻⁶ Ω⁻¹cm⁻¹ at 223°C

- > 1.8 x 10⁻² Ω⁻¹cm⁻¹ at 233°C
- Hysteresis
 - Upon cooling 5-30 °C
- Superprotonic conductivity
 - Typical conductivity
 - ~ 2.5 x 10⁻² $\Omega^{\text{-1}}\text{cm}^{\text{-1}}$ at 250°C
 - Temperature range
 232-280°C*

Arrhenius Plot of Conductivity

SUPERPROTONIC

* Dependant on $P_{\rm H2O}$

Haile et al, Faraday Discussions, 2007

SAFC Characteristics

SUPERPROTONIC

- Solid acid electrolytes
 - Solid state proton conducting membranes CsH₂PO₄
 - Operate at favorable temperatures 230-280°C
- Fuel flexibility
 - Hydrogen, methanol, ethanol, reformed fossil fuels
 - Optimal temperature for low T gas shift
 - High tolerance to CO (>10%), $H_2S(100ppm)$, & NH_3 (100ppm),
- Low cost/high performance potential
 - Optimized microstructure for improved catalysis
 - Better catalysis/less platinum

SAFC History at Superprotonic

Project Update

Objective - Relevance

The main focus of the project is to develop a solid acid fuel cell stack

- that operates on diesel reformate
- with performance characteristics approaching or exceeding most of the DOE's 2010 technical targets for an APU.

Performance Measure	Units	SPI Stack	SPI System*	DOE 2010 APU System Target	Technical Barrier(s) Addressed**
Power	Watts	300	3000	N/A	N/A
Durability	Hours	2000	2000	20000	A,B,C
Efficiency	% LHV	55	25	35	B,C
CO tolerance	%	10	N/A	N/A	A,B
H ₂ S tolerance	ppbv	50	N/A	N/A	A,B
Specific power	W/kg	55	TBD	100	B,C
Power density	W/L	160	TBD	100	B,C
Cost*	\$/kW _e	300	800	400	В

*SPI System projections will be based on scaled up stack and conceptual system design

**Barriers: A-Durability, B-Cost, C-Performance

* Cost will be projected based on production of 100000 3 kW units/year

Approach

Task 1: Development of SAFC MEA

- Fabricate and test 3 cm² and 20 cm² MEA
- Optimize MEA performance
- Develop proposal for scaling up MEA fabrication to 125 cm²

Task 2: Fabrication of 125 cm² SAFC MEA

- Fabricate using method based on 3 cm² and 15 cm² MEA
- Fabricate using scaled up method
- Task 3: Characterization of SAFC MEA
 - Evaluate SAFC performance on reformate with CO and H₂S
 - ▶ Evaluate 3 cm² and 15 cm² MEA performance
 - Evaluate 125 cm² performance (durability, efficiency, specific power, power density, etc.)

Task 4: Design & Modeling of SAFC stack

- Design 300W stack components
 - Bipolar plates
 - Cooling plates
 - Sealing
- Model 300W stack
 - Flow field distribution
 - Pressure gradient

 Task 5: Fabrication of 300W SAFC stack

SUPER PROTONIC

- Task 6: Characterization of SAFC stack
 - Durability
 - Long term stability
 - Thermal cycling
 - Efficiency
 - Specific power
 - Power density
 - Test on reformate
- Task 7: Design 3kW SAFC stack
 - Scale up 300W design
 - Modeling

High volume cost projection

Task 8: Design 3kW SAFC system

- Control and ancillary subsystems
- Start-up and shutdown procedures and algorithm

Milestones

SUPERPROTONIC

Month/Year	Milestones or Go/No-Go Decision
August 2008	Go/No-Go decision: Complete evaluation of MEA fabrication and assess scalability with existing manufacturing processes. Conduct feasibility of electrolyte layer deposition using a sprayer and electrolyte densification via roller compaction. (Status – met)
September 2008	Go/No-Go decision: Complete evaluation of SAFC stack functionality and stability on synthetic reformate with high CO (10%) and H_2S (100 ppm) content. (Status – met)
October 2008	Milestone: Complete 300W stack design completed based on existing 50W stack configuration. (Status – 75% complete)
November 2008	Milestone: Complete evaluation of 20 cm ² SAFC stack functionality and stability on reformed methanol and liquid propane gas (Status – 100% complete)
January 2008	Milestone: Model flow field and pressure gradient on a 300W SAFC stack. (Status – 50% complete)
February 2008	Milestone: Fabricated 125 cm ² SAFC MEA based on current 20 cm ² MEA fabrication process (Status – 10% complete)
March 2008	Go/No-Go decision: Complete feasibility of SAFC stack functionality on reformed diesel fuel. (Status met)
October 2009	Milestone: Demonstrate micro-porous layer deposition using tape casting technique (Status – planned)
November 2009	Milestone: Demonstrate anode and cathode catalyst layer deposition using a sprayer (Status – planned)
December 2009	Go/No-Go: Fabricate 125 cm ² SAFC MEA (10 minimum) using proposed fabrication process. (Status – planned)

- 1. Micro-porous layer (MPL) deposition via the tape casting process;
- 2. Anode catalyst layer (ACL) deposition using a sprayer with positive displacement pumps;
- 3. Electrolyte layer deposition using a sprayer with positive displacement pumps;
- 4. Electrolyte layer densification via the roller compaction method;
- 5. Sub-gasket layer insertion;
- 6. Cathode catalyst layer deposition using a sprayer with positive displacement pumps;
- 7. Cathode gas diffusion layer (GDL) attachment.

13

SAFC Performance on Synthetic Reformate

6

SAFC Performance on Methanol Reformate

- Minimal effect of reformate on twenty 20 cm² cell stack performance
 - Mostly H₂ dilution effect
- Gas flow/compositions
 - ▶ Cathode: 7 SLPM air + 0.3 bar H₂O
 - ► Anode:

```
Hydrogen: 1.0 SLPM H<sub>2</sub> + 0.3 bar H<sub>2</sub>O
```

Reformate: 2.8 SLPM methanol reformate + 0.3 bar H₂O

- methanol reformate:
 - 74.2% H₂

6.8% CO

18.2% CO₂

SAFC Performance on Propane Reformate

- Minimal effect of reformate on twenty 20 cm² cell stack performance
 - Mostly H₂ dilution effect
- Gas flow/compositions
 - ► Cathode: 6.4 SLPM air + 0.3 bar H₂O
 - ► Anode:

```
Hydrogen: 1.0 SLPM H<sub>2</sub> + 0.3 bar H<sub>2</sub>O
```

Reformate: 5.8 SLPM commercial propane reformate + 0.3 bar H_2O

- ▶ commercial propane reformate:
 - 41.1% H₂
 - $34.6\%\ N_2$
 - 10.6% CO
 - 9.84% CO₂
 - 0.24% CH₄
 - 0.005% C₃H₈
 - 0.5ppm H₂S

SAFC Performance on Diesel Reformate

- Some effect of reformate on ten 20 cm² cell stack performance
 - ► Strong H₂ dilution effect
- Gas flow/compositions
 - Cathode

3 SLPM air + 0.3 barH₂O

Anode:

Hydrogen: 1.0 SLPM H₂ + 0.3 bar H₂O

Reformate: 3.0 SLPM ultra low sulfide diesel reformate + 0.3 bar H_2O

Ultra Low Sulfide Diesel :

35% H_2 41% N_2 14% CO 10% CO₂ 0.3% CH₄ 1ppm H_2S (by Volume)

Fabrication of 125 cm² SAFC MEA

300 W Stack Design

- Stack parameters*
 - > Diameter: 18 cm
 - ➤ Height: 11 cm
 - ➤ Weight: ~10 kg

* Based on power density of 0.2W/cm²

Flow field and pressure gradient modeling

- Active area ~ 125 cm²
 Flow field
- Channel depth: 0.9 mm Channel width: 1.1 mm Channel length: 68~76 cm
- Manifold Area: 2 cm²

FEA modeling suggests

- Uniform flow distribution across electrode surfaces
- Uniform pressure drop between flow field channels

300 W Stack Modeling

Full modeling requires too much memory, it was necessary to simplify the model

- 1. Straight channels replaced serpentine channels
- 2. Shorter channels replaced full-length channels to save memory
- 3. 20-cell stack was considered and each cell has four straight channels
- 4. Calculated velocity distribution between cells
- 5. Modeling geometry
 - Channel depth: 0.9 mm
 - Channel width: 1.1 mm
 - Channel length: 14~15 cm
 - Tube length: 7.6 cm
 - Manifold Area: 2 cm²

SUPERPROTONIC

Flow Distribution Modeling

SUPERPROTONIC

4 I/min

10 I/min

Collaborations

Academic

- Collaboration with the California Institute of Technology
 - Resource for analytical instrumentation;
 - Synthesis of CsH_2PO_4 electrolyte nanoparticles to increase the power density.

Industry

- Richard E. Mistler, Inc.
 - Determine whether the current formulation used at Superprotonics to produce micro porous layer can be scaled to production on a full length tape casting machine;
 - Develop a technique for the production with one step casting operation.

Future Work

FY2009

- Continue to optimize SAFC MEA performance to levels of commercial viability
- ▶ Build and characterize a 300W SAFC stack operating on hydrogen fuel
 - Employ micro-porous layer deposition using tape casting
 - Employ anode and cathode catalyst layer deposition using sprayer
 - Employ CDP electrolyte densification using compaction
 - Fabricate 125 cm² SAFC MEA using above processes
- FY2010
 - ▶ Build and characterize a 300W SAFC stack operating on diesel reformate
 - Complete conceptual design of 3 kW SAFC stack
 - Complete conceptual design of 3 kW SAFC system

Project Summary

- Relevance: Demonstrate the feasibility of SAFC for energy efficient APU applications.
- Approach: Build and characterize 300 W SAFC stack on hydrogen and reformed diesel fuels; design 3 kW SAFC stack and system.
- Technical Accomplishment and Progress: Demonstrated SAFC functionality and stability on methanol, propane, and diesel fuels.
- Technology Transfer/Collaborations: Active partnership with the California Institute of Technology and Mistler, Inc..
- Proposed Future Work: Scale up SAFC MEA size and quantity; build 300 W SAFC stack; design 3 kW SAFC system.

Superprotonic, Inc. gratefully acknowledge the support of the DOE under Cooperative Agreement Number DE-FG36-08GO88099.

This support does not constitute an endorsement by DOE of the material expressed in this presentation.

Further Information

Hau H. Duong, Ph.D., M.B.A. Vice President of Product Development (626) 793-9314x112 hau.duong@superprotonic.com

Calum Chisholm, Ph.D.

Founder & Vice President

(626) 793-9314 x103

calum.chisholm@superprotonic.com

Superprotonic, Inc.

81 W Bellevue Drive Pasadena, CA 91105

www.superprotonic.com

Supplemental Slides

Cesium Dihydrogen Phosphate *Thermal properties*

SUPERPROTONIC

 $CsH_2PO_4 \leftrightarrow CsPO_3 + H_2O$

- Long debated in literature
- Stability proven under water partial pressure (*P*H2O)
- How much PH2O to stabilize superprotonic CsH2PO4?

Dehydration temperature (T_d) is almost commensurate with superprotonic phase transition temperature (T_{SP}) at ambient humidity levels

$$T_{\rm d} \approx T_{\rm SP}$$
 ($P_{\rm H2O} < 0.1$ bar)

Cesium Dihydrogen Phosphate SUPERPROTONIC Humidity-temperature stability-phase diagram

*Taninouchi, J. Mater. Chem., 2007; Taninouchi, Solid State Ionics, 2007

Time (h)