

Low-cost Co-Production of Hydrogen and Electricity

Fred Mitlitsky Bloom Energy Corporation May 22, 2009

Project ID #FC_46_Mitlitsky

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Contract signed: November 13, 2006
- Contract end date: December, 2009
- To date: 65% complete

Budget

- Total project funding: \$4,973,601
 - DOE share: \$2,480,000
 - Contractor share: \$2,493,601
- Funding received in FY08: \$933,153
- Estimated FY09 funding: \$1,435,838

Barriers addressed

- Distributed hydrogen production from natural gas: purity, volume, cost
- Fuel Cells: durability, performance, cost

Partners

- Bloom Energy: Planar SOFC system, hydrogen testing, and project management
- Udelhoven Oilfield System Services, Anchorage, AK: General Construction
- H2 Pump LLC, Latham, NY: Equipment
- Giner Electrochemical Systems, LLC, Newton, MA: Equipment
- Univ. of Alaska, Fairbanks, AK: Independent Validation

Objectives

Overall	 Demonstrate cost-effective, efficient, reliable and durable planar solid oxide fuel cell (PSOFC) systems for stationary applications Determine the feasibility of a delivered cost of hydrogen below \$2.50 per gge Determine the economics of hydrogen and electricity co-production for comparison to stand alone hydrogen production facilities
2008	 Complete site construction Install, commission & remotely operate PSOFC system Hydrogen pump production system build, test & optimization Combined PSOFC & hydrogen production system testing Partial pressure swing adsorption (PPSA) prototype design Hydrogen cost analysis using the DOE H2A model
2009	 Complete PSOFC system demonstration Complete hydrogen production demonstration Complete PPSA build, test & investigation Complete cost and economics analysis

General Approach

- Build and test a planar solid oxide fuel cell electricity generating system that runs on natural gas
 - One year operating demonstration at commercial site
- Evaluate hydrogen production systems
 - Select one option for in-system demonstration
 - Procure, integrate & test
- Demonstrate PSOFC co-production of electricity and hydrogen
- Independent, third party validation (University of Alaska, Fairbanks)
- Economic analysis

Tasks

- 1. Site selection, design & build
- 2. Design integration of hydrogen production module with PSOFC
- 3. H₂ Pump, PSOFC system builds & in-lab testing
- 4. PSOFC in-field demonstration

Hydrogen production demonstration

5. Decommissioning

Technical Accomplishments/Progress/Results

- Alaska site build completed with partners
 - Udelhoven Oilfield System Services
 - PDC Engineering
 - Johnson Controls
 - Chugach Electric Cooperative
 - Enstar Natural Gas
 - City of Anchorage
- PSOFC system installed and operational key metrics achieved
- Full scale hydrogen pump integrated with PSOFC
 - Commercial anode exhaust hydrogen separation and recycle solution chosen (H2 Pump) for integration & testing with PSOFC
- Partial pressure swing adsorption (PPSA) design & prototype testing in parallel (Giner)
- Hydrogen cost analyzed using the DOE H2A model

PSOFC Field Demonstration: Site Build

Site prior to PSOFC install

Electrical/Gas Inputs, Air Outputs

Building Air Handling Unit

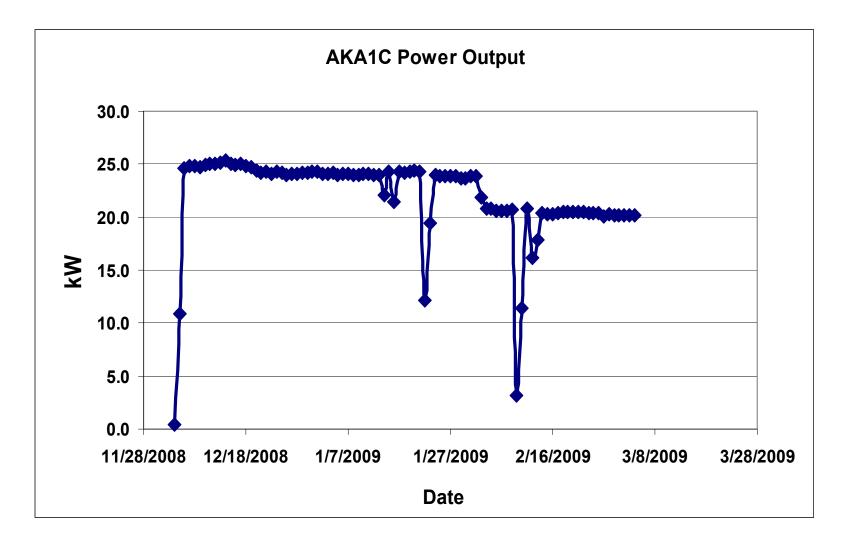
Air Handling Unit Inlet with Hoarfrost

PSOFC System Operation Objectives

- 25 kW power
- Operation on natural gas
- Operate at 480V
- Grid parallel operation
- Remote monitoring
- 70% uptime over one year demonstration
- 45% peak net electric efficiency in electric-only mode

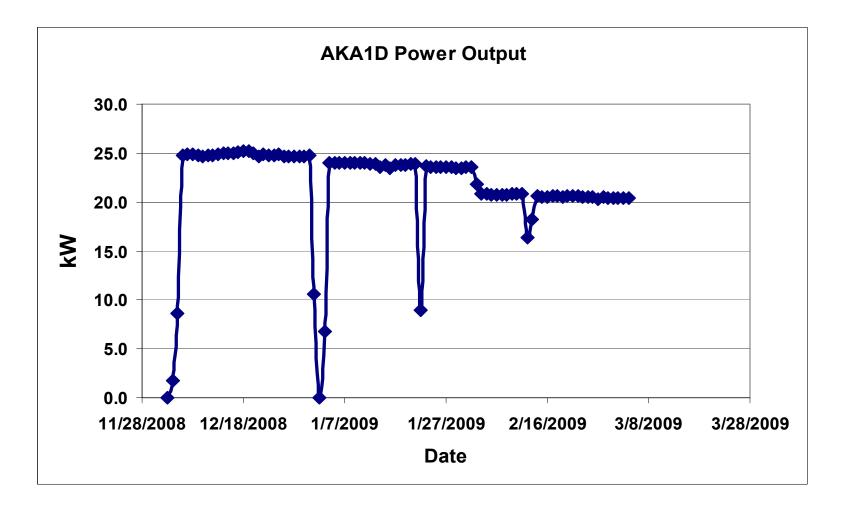
25kW PSOFC System 1C Operating Statistics

25kW Operation	Sy	stem 1C
Average AC Efficiency	45.9	%
Peak AC Efficiency	51.1	%
Total Energy Output	48004	kWhrs
Total Fuel Consumption	10351856	L
Peak AC Power	25.9	kW
Hrs On-Site	2191	Hrs
Uptime	2178	Hrs
Load Hrs	2166	Hrs
Availability On Load	98.9	%
Availability at 20.0kWac+	93.6	%
Grid Faults	4	
System Faults	3	


-Ship 11/16/08 -Start 12/3/08 -Run data through 3/5/09

25kW PSOFC System 1D Operating Statistics

25kW Operation	Sy	stem 1D
Average AC Efficiency	46.1	%
Peak AC Efficiency	48.9	%
Total Energy Output	47538	kWh
Total Fuel Consumption	10183941	L
Peak AC Power	25.4	kW
Hrs On-Site	2191	Hrs
Uptime	2182	Hrs
Load Hrs	2177	Hrs
Availability On Load	99.4	%
Availability at 20.0kWac+	93.2	%
Grid Faults	3	
System Faults	3	


-Ship 11/16/08 -Start 12/3/08 -Run data through 3/5/09

System 1C Power Output

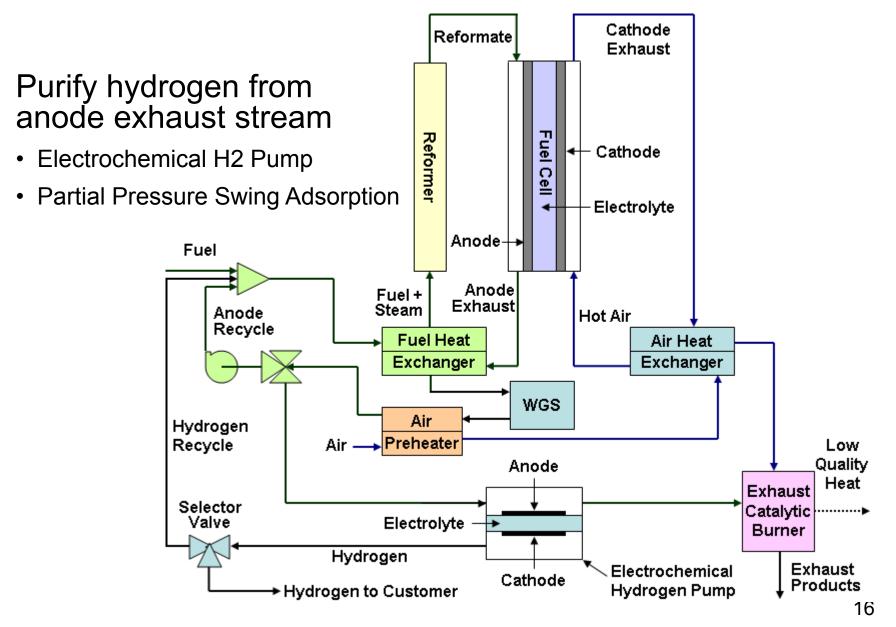
Run data 12/3/08 through 3/5/09

System 1D Power Output

Run data 12/3/08 through 3/5/09

Fault Analysis

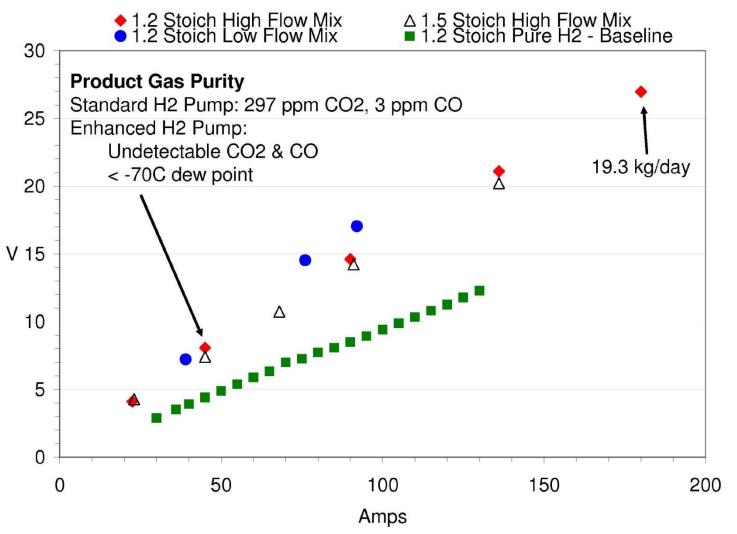
- Six service calls 12/3/08 3/5/09
- #1 fault condition: Anchorage weather
 - Water pump & water flow meter: not rated for <0C
 - Building thermal control shutdown when air intake clogged with hoarfrost
- Components upgraded
 - Power electronics
 - Mass flow controller
 - Anode recycle blower


Blower Studies

- Blower research and development to improve system efficiency and reliability through reduction of parasitic losses and simplified installation
- Development of anode recycle blower capable of high temperature ambient/media
 - Hydrogen
 - Carbon Dioxide
 - Steam
 - Carbon Monoxide

- Started with a commercially available air blower
 - Collaboration with vendor and their local university
 - Applying CFD to develop a series of modifications to make it suitable for operation as an anode recycle blower

Low-Cost Co-Production of Hydrogen and Electricity


25kW PSOFC Demonstration with H2 Pump

- Two operational modes
 - Hydrogen recycle
 - External hydrogen delivery
- SOFC operation at 95% fuel utilization in recycle mode
- 2000 hours test duration, with < 5% performance degradation of hydrogen production (19 kg/day max production)

H2 Pump with 120 cell stack Operating temperature: 150C – 180C Product hydrogen pressure: <5 psig

H2 Pump Test Demonstrated 19kg/day & High Purity

 Improved plumbing, preparation & measurement capability are needed to demonstrate hydrogen purity exceeding six 9's

Full Sized PPSA Prototype Build

- 25kW sized PPSA unit from Giner expected Q2 '09
- No water gas shift required
- Low parasitic electrical power
- Anode exhaust to be separated
 - Flow rate: 99 slpm
 - Temperature: 30C
 - Supply pressure: 5 inches water column
 - H₂ (29.3%), CO₂ (66%), H₂O (3.4%) & CO (1.3%)
- PPSA effectiveness
 - 80% fuel recovery (CO, CH₄, H₂)
 - 95% CO₂ separation

H2 Cost Analysis Using DOE H2A Model

	Original Proposal (BE model)	Current Analysis (H2A Model)
Installed Capital Cost	\$1,500 / kW	\$1,500 / kW
Overall System Efficiency	56%	56%
Net Electrical Efficiency	33%	33%
NG Cost	\$8 / mmbtu	AEO 2007
Capacity Factor	90%	98%
H2 / Year	50,192 kg	54,656 kg
Electrical Output	200kW	200kW
Delivered cost of H2/gge	\$4.82	\$4.53

BE & H2A models are very consistent; differences are in assumed capacity factor

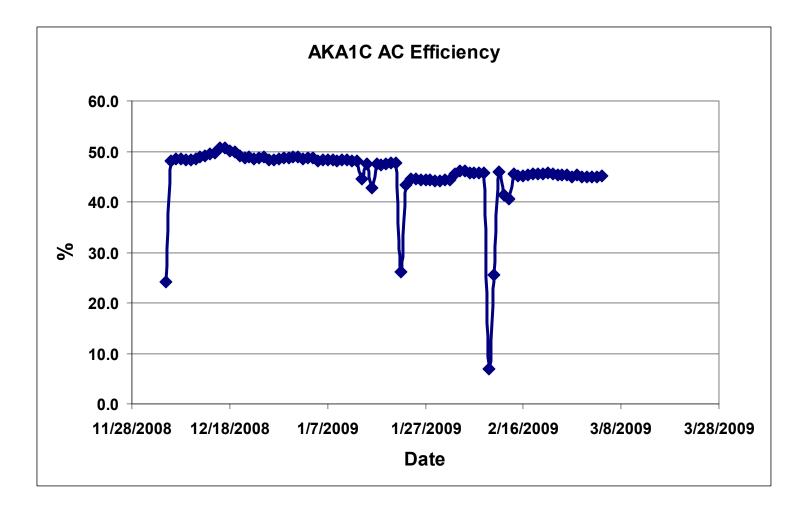
H2 Cost Analysis Adding Value of Electricity

	Original Proposal (BE model)	Current Analysis (H2A Model)
Delivered cost of H2/gge	\$4.82	\$4.53
Value of Electricity	\$0.12 / kWh	\$0.12 / kWh
Electrical output	1,576,800 kWh / year	1,716,960 kWh / year
Value of annual output	(\$167,360)	(\$182,240)
H2 / Year	50,192 kg	54,656 kg
Value of Electricity / kg H2	(\$3.77)	(\$3.77)
H2 cost, net/gge @ 300 psi	\$1.26	\$0.97

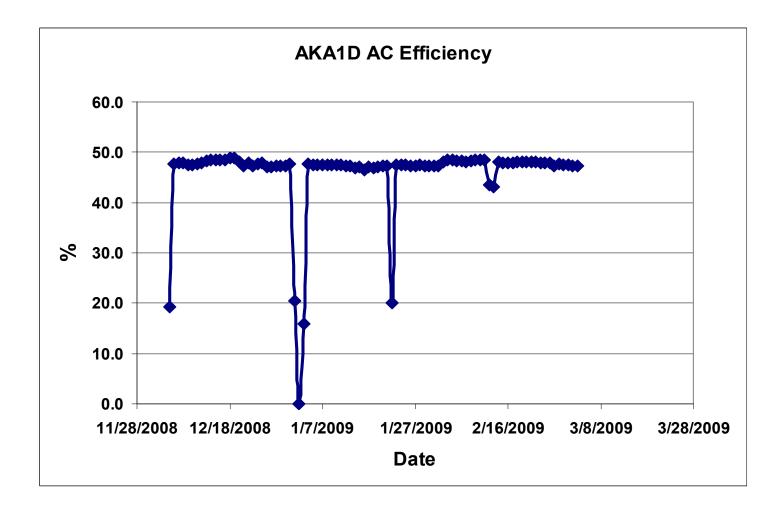
Projections are consistent with DOE delivered cost of H2 goals

Future Work

- Complete one year demonstration of PSOFC system
- Complete demonstration of co-production of electricity and hydrogen
 - Complete PSOFC & H2 Pump 2000 hour test
 - Third party validation of volume & purity
- Complete PPSA prototype test
- Complete cost modeling


Supplemental Slides

Photograph by R. Clucas, courtesy Alaska Volcano Observatory, USGS


Mt. Redoubt volcano eruptions shutdown Anchorage Airport in March 2009

System 1C Efficiency

Run data 12/3/08 through 3/5/09

System 1D Efficiency

Run data 12/3/08 through 3/5/09