

Development of a Novel Efficient Solid-Oxide Hybrid for Co-generation of Hydrogen and Electricity Using Nearby Resources for Local Application

> Greg Tao, Bruce Butler, Mike Homel, and Anil Virkar Materials & Systems Research Inc., Salt Lake City, UT

2009 DOE Hydrogen Program Annual Review May 22, 2009

Project ID#: FC_47_Tao

Overview

Timeline

- Project started: 02/10/2006
- Project ends: 07/31/2009
- Percent completed: 80%

Budget

- Total budget funding
 - DOE \$2,480k
 - Contractor \$ 620k
- Funding received in FY08
 \$ 823k
- Funding for FY09
 - \$ 0k

Barriers

Hydrogen generation by water electrolysis

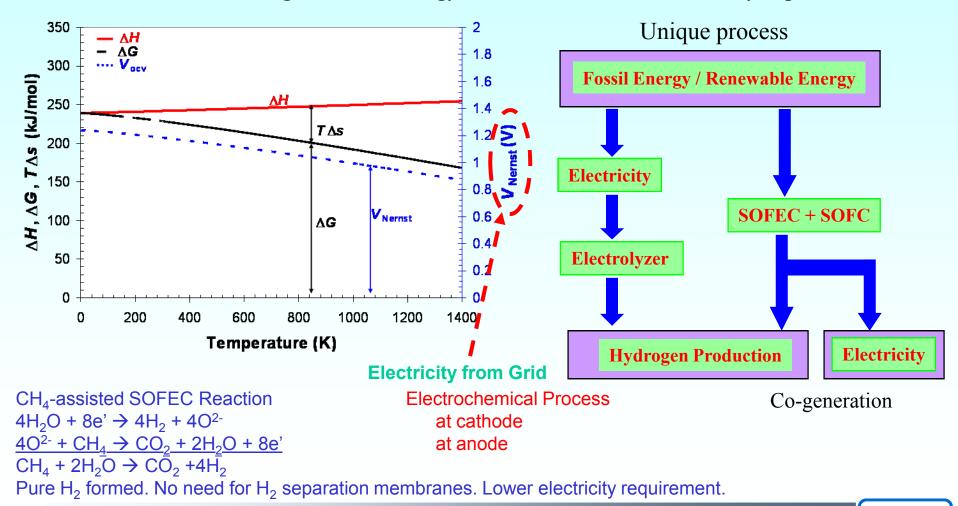
- G Capital cost
 - Low-cost, durable high-temperature materials development
 - Lower operating temperature
- H System efficiency

Partners

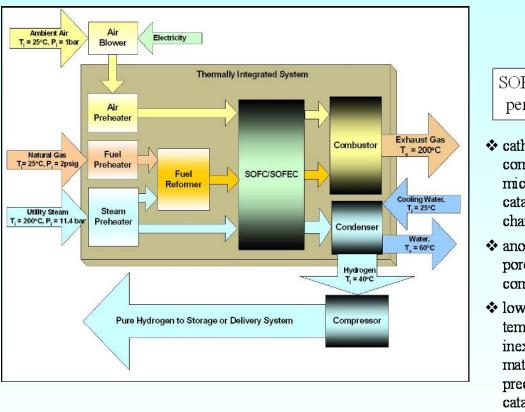
- University of Alaska Fairbanks (UAF) anode fracture mechanisms and modeling of residual stresses (**S. Bandopadhyay**)
- Missouri University of Science and Technology (MST) cathode & seal materials development (**H. Anderson; R. Brow**)
- University of Utah (UU) interconnect development (A. Virkar)

Objective/Relevance

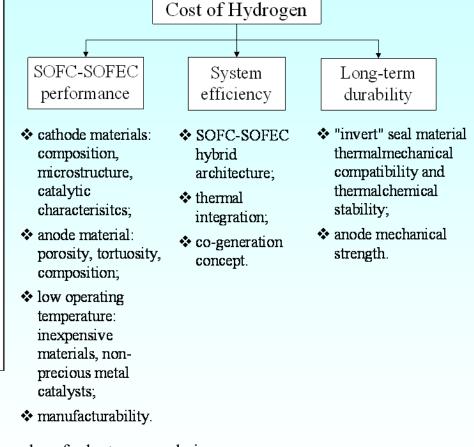
Overall Objective	 To develop a low-cost and highly efficient 5 kW SOFEC-SOFC hybrid system co-generating both electricity and hydrogen to achieve the cost target of < \$3.00/gge when modeled with a 1500 gge/day hydrogen production rate The project focuses on materials R&D, stack design & fabrication, proof-of-concept of cogeneration, and system design, manufacture & experimental verification
2008	 5 kW SOFEC-SOFC hybrid system development Stack design Hybrid system design BOP components development (design and fabrication) Cell & non-cell repeat units fabrication
2009	 5 kW SOFEC-SOFC hybrid system evaluation SOFC and hybrid SOFEC-SOFC module assembly and evaluation Control system assembly & programming System final assembly and evaluation Implementation of H2A model for cost analysis


Milestones

Quarters, FY	Milestone
2 nd Quarter, FY08	Completed the design of the 5 kW system and major BOP components
4 th Quarter, FY08	Completed fabrication and pre-test of most BOP components. Purchased off-the-shelf hardware for the hybrid system
1 st Quarter, FY09	Completed fabrication of cell/stack components. Assembled and evaluated the 1 st kW SOFC stack with new designs. Hosted a site visit of the DOE Hydrogen Safety Panel
2 nd Quarter FY09	Assemble and run burn-in cycle of 1 st kW SOFEC-SOFC hybrid module
3 rd Quarter FY09	Finish assembly and burn-in of remaining modules. Initiate system assembly



Background


A Solid Oxide Fuel-Assisted Electrolysis Cell (SOFEC) directly applies the energy of a chemical fuel to replace the external electrical energy required to produce hydrogen from water/steam; decreasing the cost of energy relative to a traditional electrolysis process.

Concept of Hybrid SOFEC-SOFC Integral System

Technical Challenges and Solutions

- Pure H₂ & electricity co-production from feedstock: hydrocarbon fuel, steam, and air
- Hybrid comprised of SOFECs and SOFCs
- SOFECs produce pure H_2 and SOFCs generate electricity for a high H_2 production rate
- Thermal integration improves system efficiency

Approach

<u>Materials</u> <u>Development</u>

- A. Cathode materials Dev.
- B. Anode optimization
- C. Electrolyte optimization
- D. Catalyst studies
- E. Seals development
- F. Fabrication Q.A.

100% complete

<u>Cell / Stack</u> /System Design

- A. Stack design
- B. 5kW system design
- C. BOP design/dev.
- D. Stresses analyses
- E. Seals application
- F. Economic analysis

MSRI, UAF, MST, UU

90% complete

<u>Experimental</u> Verification

- A. Short stacks in dif. modes
- B. 1 kW hybrid stack

He gas (2psig)

Biaxial Fixture

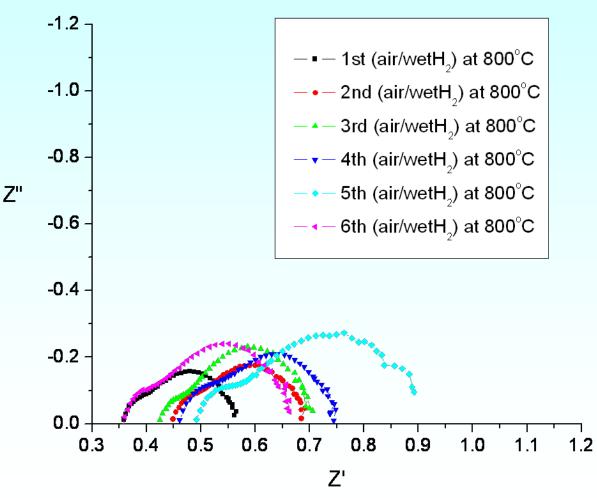
- C. Durability evaluation
- D. BOP design & evaluation
- E. 5 kW hybrid system development & evaluation

70% complete

MSRI, UU, MST

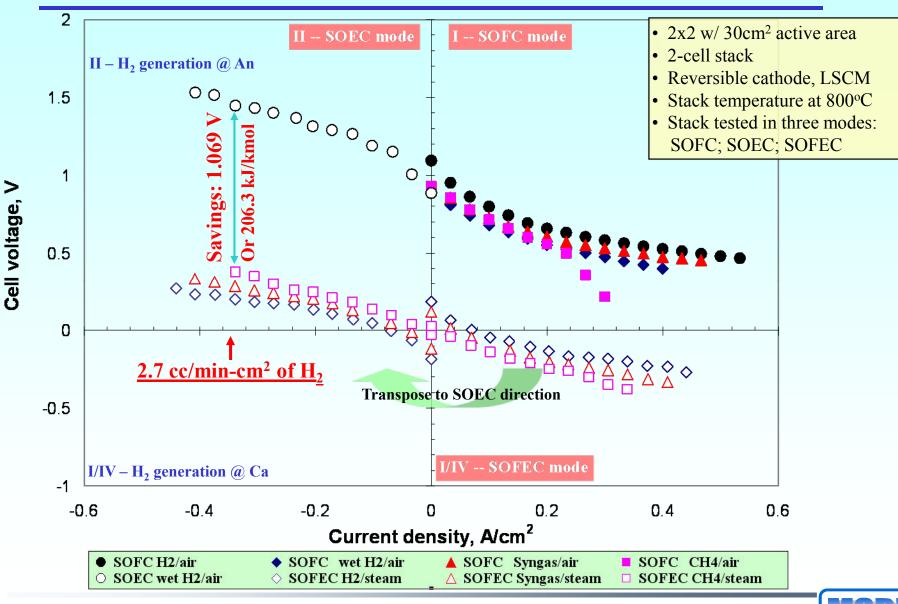
Success

1-2 kW Stack (100 cm²/cell)

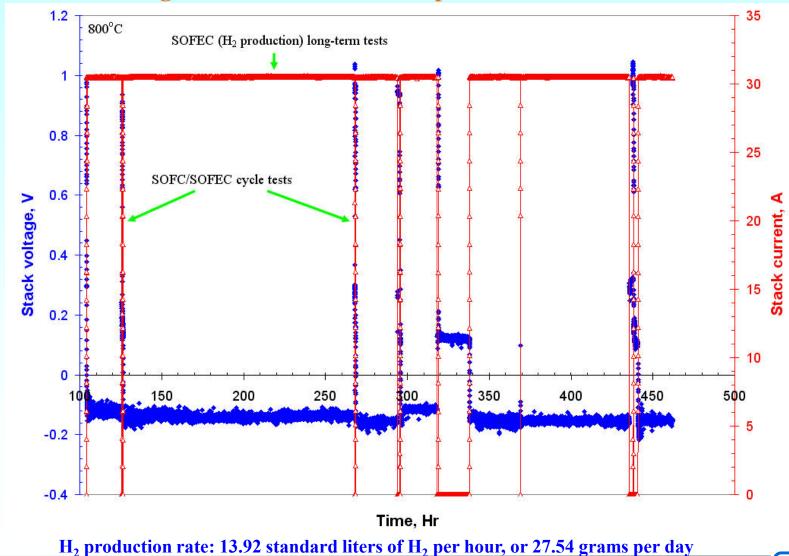


MSRI, MST

SOFEC Cathode Materials Development

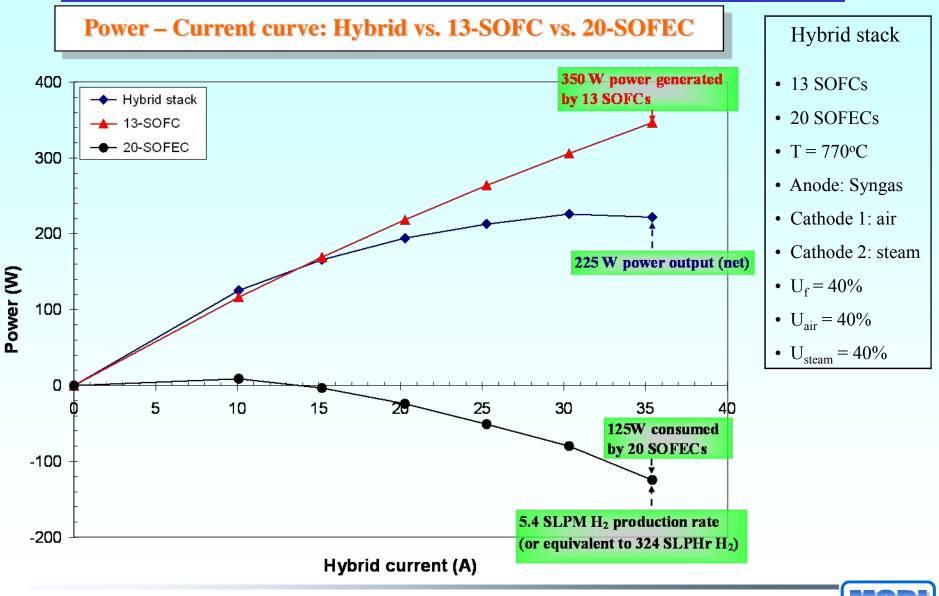

LSCM Redox Stability Study

- Previous studies show that (La,Sr)(Cr,Mn)O₃based cathode material is electrocatalytically and chemically stable in both reducing and oxidizing atmospheres
- Previous long-term tests show degradation rate < 1% per 1000hrs over a 4500 hrs continuous test in the SOFC mode.
- Redox stability is desired for reversible applications

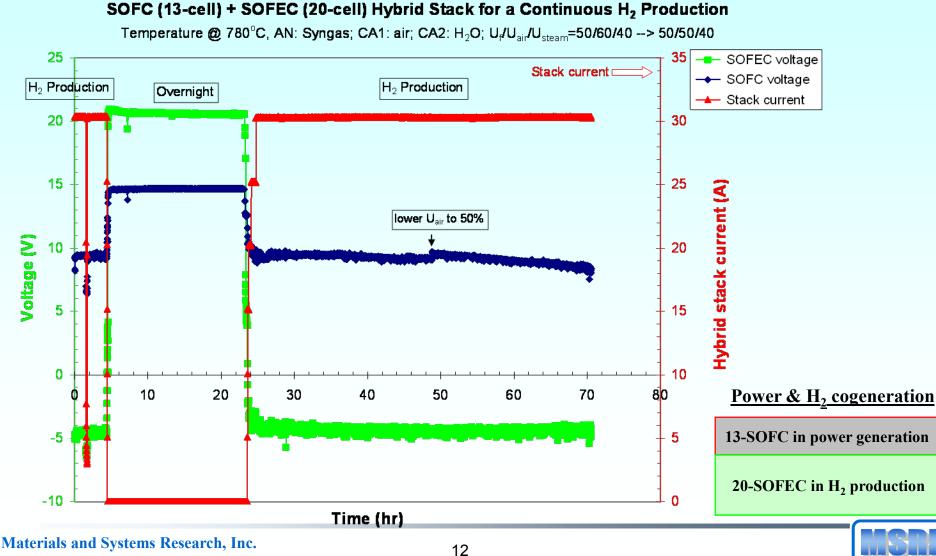


Stack Performance Characteristics in SOFC/SOEC/SOFEC Modes

SOFEC Stability Test


Single-cell stack with 100 cm² per-cell active area

Materials and Systems Research, Inc.



Proof-of-concept: Hybrid Stack Co-generation of H₂ & Electricity

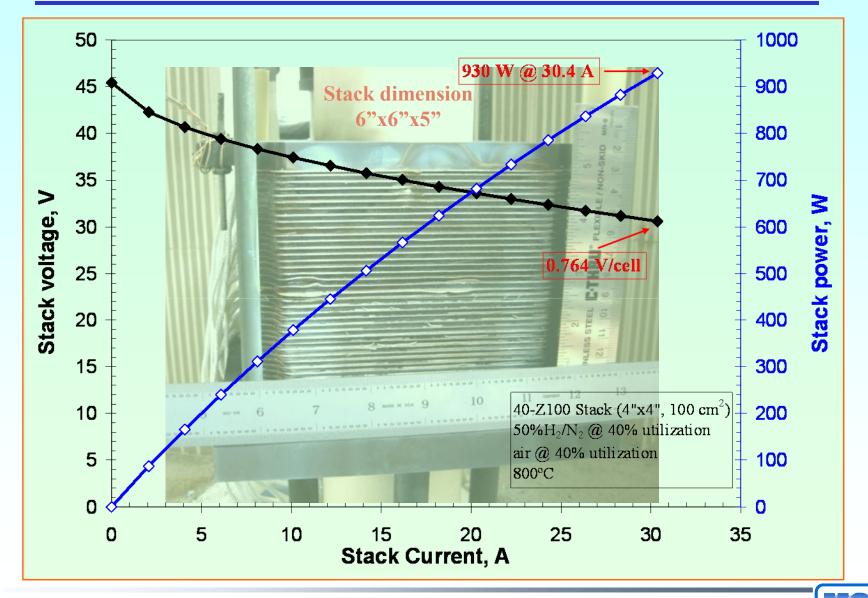
SOFEC-SOFC Hybrid Continuous Cogeneration

Co-Production rate: Net power output @ 130 Watts and 270 standard liters of H₂ per hour (or 0.534 kg/day)

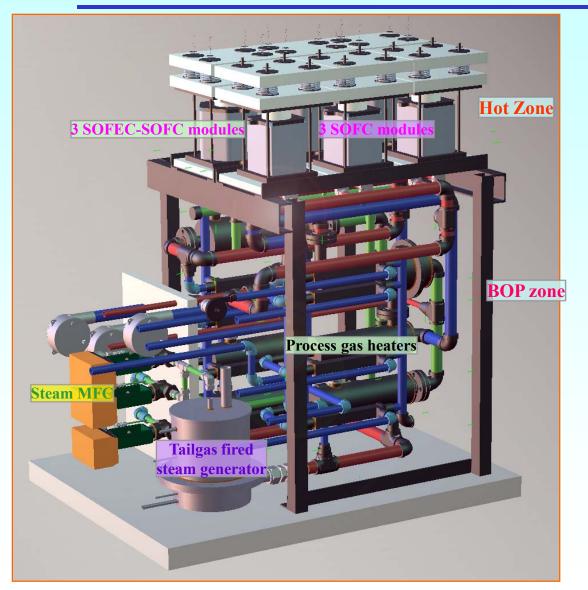
5 kW System Development – Cell Fabrication

- Completed cell fabrication for 3 SOFEC-SOFC hybrid stack for cogeneration hydrogen and electricity
- Completed cell fabrication for 3 dedicated SOFC stacks for power generation
- Six modules will be tested individually before assembly into system

Interconnect Brazing System Development



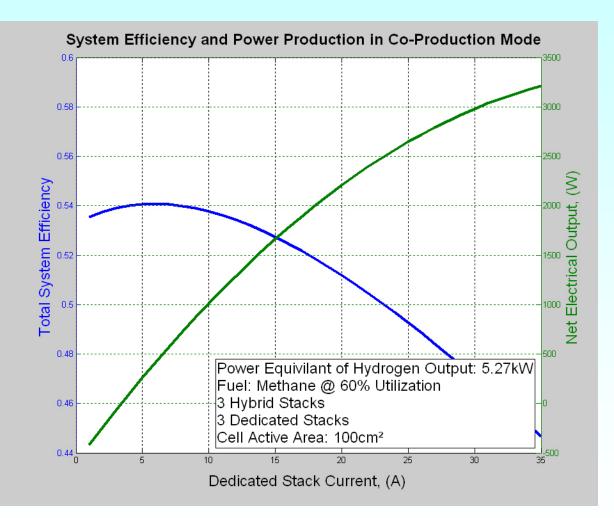
- Developed and refined interconnect brazing process inhouse:
 - Intermediate furnace-brazing temperature in a controlled atmosphere
 - High yield consistency
 - ➤ Gas leak-tight bonds between each metal grill/foil
 - High quality interconnect assembly without creep-flattening
 - Significant cost-reduction in materials and machining



Materials and Systems Research, Inc.

1 kW SOFC Stack Evaluation

5 kW Hybrid System Design



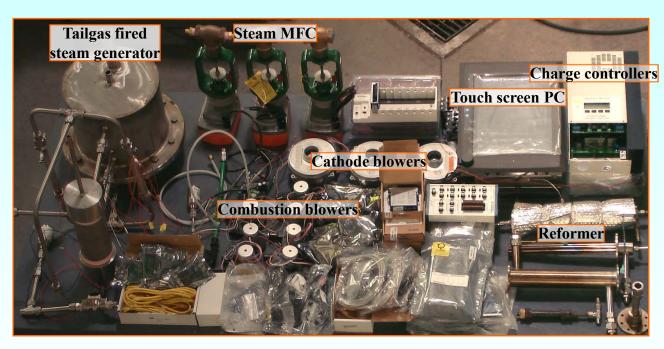
- 3 hybrid SOFEC-SOFC modules
- 3 dedicated SOFC modules
- Modular compression hardware
- Separate tailgas fired process gas heaters for hybrid and dedicated modules
- Central steam generator feeding reformers and SOFEC cathode chamber
- Tailgas combustors designed for partial combustion of lean tailgas mixture
- Variable speed air control to tailgas combustors
- Combustion air heated by cathode exhaust for high efficiency
- 100% of heat to BOP components recovered from stack exhaust stream

5 kW Hybrid System Efficiency Estimation

- Value calculated based on sum of H₂ produced (LHV) and net electrical output divided by fuel consumed. (LHV of CH₄)
- Efficiency varies with output level, operating mode, and fuel utilization.
- Peak cogeneration efficiency: 54%

Design, Fabrication, and Test of BOP Components

- Process gas heaters, reformers and steam generators were designed, fabricated and tested prior to system integration
- Catalytic combustors ensure minimal noxious byproducts



Off-the-Shelf Hardware Acquisition

- Control Hardware (Real Time DAQ)
- Power Electronics
 - Commercial PV charge controllers
 - High current SSR for load switching
- Blowers
 - 7 Combustion blowers
 - ➤ 3 Cathode blowers
- NG line booster & cleanup
- Flow Control
 - > 2 NG MFC
 - ➢ 3 Steam MFC
- Instrumentation
 - > Thermocouples
 - Pressure sensors
 - Current/Voltage readings
- User Interface
 - Manual shutoff valves
 - Touch screen PC
 - Automated controls

Future Work (FY 09)

<u>FY 09</u>

- 5 kW Hybrid System Assembly and Evaluation
 - ➢ SOFC module assembly and burn-in
 - SOFEC-SOFC hybrid module assembly, integration and burn-in
 - ➤ 5 kW hybrid system assembly
 - ➢ System testing and evaluation
 - Implementation and optimization of system controls
 - Hydrogen production cost analysis using H2A model

Project Summary

Relevance:	Investigate an alternative means to provide low-cost and highly efficient distributed electricity and hydrogen
Approach:	Develop a 5 kW SOFEC-SOFC hybrid system based on innovative materials development and system design research to co-generate hydrogen and electricity
Project Accomplishments	<u>Materials development</u> : – Evaluated redox stability and long-term stability of the promising cathode material for SOFEC applications.
and Progresses:	<u>5 kW hybrid system development</u> : – Conducted long-term stability tests of hydrogen production to reduce cost. – Finalized the design of hybrid modules with improved thermal and flow management. – Designed, fabricated, and tested main balance-of-plant components. – Fabricated cell/stack components for the 5 kW system. – Assembled and evaluated 1kW SOFC stack with new design.
Proposed Future Research:	Complete assembly and burn-in test of hybrid SOFEC-SOFC modules and dedicated SOFC modules; complete control system assembly & programming; implement 5 kW system experimental evaluation and perform cost analyses using DOE H2A model.

