2009 DOE Hydrogen Program

MANUFACTURING OF LOW-COST, DURABLE MEMBRANE ELECTRODE ASSEMBLIES ENGINEERED FOR RAPID CONDITIONING

F. Colin Busby W. L. Gore & Associates, Inc. 5/20/2009

Project ID # mf_04_busby

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Phase 1 Overview

Budget

- Total Project Funding: **\$1.28MM**
 - \$834k DOE Share
 - \$450k Gore, UTCP, & UD Share
- Received in FY08: \$654k
 - \$77k spent as of 3/20/09
- Funding for FY09: \$177k

Barriers Addressed

- Lack of High-Volume MEA Processes
- Stack Material & Mfg. Cost
- MEA Durability

Timeline

- Project start: October 1, 2008
- Project end: December 30, 2009
- 15% Percent Complete as of 3/20/09

Partners

- University of Delaware (UD)
 - MEA Mechanical Modeling
 - A. Karlsson & M. Santare
- UTC Power, Inc. (UTCP)
 - MEA Conditioning Modeling
 - T. Madden & M. Khandelwal
- W. L. Gore & Associates, Inc. (Gore)
 - Project Lead
 - F. Busby

Table 3.4.3 Technical Targets: 80-kWe (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^a					
Characteristic	Units	2003 Status	2005 Status	2010	2015
Cost ^e	\$ / kW _e	200	70 ^f	25	15
Durability with cycling	hours	N/A	2,000 ^g	5,000 ^h	5,000 ^h

Relevance: Overall Objective

The overall objective of this project is to develop unique, high-volume¹ manufacturing processes that will produce low-cost², durable³, high-power density⁴ 3L MEAs⁵ that require little or no stack conditioning⁶.

- 1. Mfg. process scalable to fuel cell industry MEA volumes of at least 500k systems/year
- 2. Mfg. process consistent with achieving \$15/kW_e DOE 2015 transportation stack cost target
- 3. The product made in the manufacturing process should be at least as durable as the MEA made in the current process for relevant automotive duty cycling test protocols
- 4. The product developed using the new process must demonstrate power density greater or equal to that of the MEA made by the current process for relevant automotive operating conditions
- 5. Product form is 3 layer MEA roll-good (Anode Electrode + Membrane + Cathode Electrode)
- 6. The stack break-in time should be reduced by at least 50 % compared to the product made in today's process, and break-in strategies employed must be consistent with cost targets

Table 3.4.3 Technical Targets: 80-kWe (net) Transportation Fuel Cell Stacks Operating on Direct Hydrogen ^a					
Characteristic	Units	2003 Status	2005 Status	2010	2015
Cost	\$ / kW _e	200	70 ^f	25	15
Durability with cycling	hours	N/A	2,000 ^g	5,000 ^h	5,000 ^h

Relevance: Phase 1 Objectives

- Characterize current commercial MEA performance (Gore)
 - Understand gaps between current MEA performance & DOE targets
 - Obtain data to enable future comparison with MEA's made by new processes
- Develop a cost model for the current commercial MEA and estimate potential savings (Gore)
 - Understand gaps between current process costs & DOE targets
 - Obtain baseline data to enable future comparison with new processes
 - Estimate potential savings to justify kick-off of new process development (Go / No-go decision)
- Develop a non-linear multi-layer mechanical model (**UD**)
 - Develop a deeper understanding of failure mechanisms of current MEA
 - Use model to optimize properties of MEA that will be made in the new low-cost process
- Develop an MEA conditioning model (**UTCP**)
 - Develop a deeper understanding of conditioning mechanisms of current MEA & conditioning protocol
 - Use model to optimize:
 - Properties of MEA that will be made in the new low-cost process which affect conditioning
 - Conditioning protocol (in-situ stack protocol and/or ex-situ MEA protocol) for the MEA that will be made in the new low-cost process

Approach: Summary

- Reduce MEA & Stack Costs
 - Reduce the cost of intermediate backer materials which are scrapped
 - Reduce number & cost of coating passes
 - Improve safety & reduce process cost by minimizing use of solvents
 - Reduce required conditioning time & costs
- Improve Durability
 - Optimize mechanical properties of the 3L construction
- Enabling Technologies:
 - Direct coating: Use coating to form at least one membrane–electrode interface
 - Gore's advanced ePTFE membrane reinforcement & advanced PFSA ionomers
 - Modeling will be used to understand mechanical durability & conditioning mechanisms as well as new MEA optimization
 - Advanced fuel cell testing & diagnostics

Approach: Potential Low-Cost MEA Mfg Process

High-Volume, Low-Cost, Full Width MEA Production

- Reduce the cost of intermediate backer materials which are scrapped
- Reduce number & cost of coating passes
- Improve safety & reduce process cost by minimizing use of solvents
- Reduce required conditioning time & costs
- Develop a cost model for the current commercial MEA & estimate potential savings
 - Utilize results of TIAX Cost Analysis of PEM Fuel Cell (Report: NREL/SR-560-39104)

Approach: Mechanical Modeling

Fuel Cell Duty Operation

• Model Concept:

Develop a layered structure MEA mechanical model using non-linear (viscoelastic & viscoplastic) polymer and electrode properties which will predict MEA lifetime for a variety of temperature & relative humidity cycling scenarios

- Devise & perform experiments to determine mechanical properties of MEA materials as functions of:
 - Temperature
 - Humidity
 - Time
- Use numerical modeling to predict mechanical response of MEA during cell operation by incorporating the properties obtained from experiments
- Utilize model to explore new MEA constructions and optimize prototypes of the MEA that will be made in the new low-cost process

Temperature Humidity **Numerical** Changes Modeling **Strains** Improved Design **Mechanical Experiments Properties Stresses Durability Models** Life Fracture Mechanics Prediction Fatigue Mechanics

Approach: Mechanical Modeling

MEA Tensile Test Method for MTS Tensile Tester with ESPEC Environmental Chamber.

MTS Alliance RT/5 Material Testing System & ESPEC Environmental Chamber

- E and σ_y obtained for MEA
- Current Temperature Capability: 20C - 90C; RH 30-90%
- Developing Low Temperature Capability (down to -40C) with limited RH control

Approach: Mechanical Modeling MEA Strain-Interrupt Test for Electrode Cracking

Approach: Mechanical Modeling Numerical Simulation Methods

Previously Determined Properties for Membrane Material

Young's Modulus (E) Yield Stress (oy)

Tensile Load response from MEA experiments

Unknown Properties for Electrode Material

Young's Modulus (E) **Failure load** Example of Model Output Data:

- Water Transport and MEA Stresses
 - 3L Residual In-plane Stress After De-Hydration

Finite Element Model

Mechanical Properties: Electrode: Elastic Properties **Membrane:** Elasto-Plastic Properties

Geometry:

Lmea: Varies according to the # of cracks included in the model. Crack Length = Wide electrode

Initial and Boundary Conditions:

- Constant Displacement
- No Cracks
- Cracks
- Cracks and Delaminations

Approach: Conditioning Model Development

Develop a <u>fundamental cell conditioning</u> model to estimate the cell/stack break-in time. The model will be <u>validated with</u> <u>single cell</u> testing at Gore, and used to identify the key controlling parameters affecting the conditioning/break-in time and propose new <u>protocols to reduce break-in time for</u> <u>PEFC stack.</u>

Key Phenomena

- Interfacial Resistance
- Electrode Structure
- Contamination

Increase of membrane hydration

Evolution of membrane structure as function of water content, Weber and Newman, *JES* 2003

Approach: Conditioning Model Development

An in-house PEFC performance model was used as an *initial model frame work* for conditioning model development.

Approach: Conditioning Model Development

Model Parameter Estimation

Technical Accomplishments & Progress: Phase 1 Summary

1.1 Test Current Commercial MEA (Gore)

- 1.1.1 Power density baseline testing
- 1.1.2 Conditioning baseline testing
- 1.1.3 Mechanical durability baseline testing
- 1.1.4 Chemical durability baseline testing

1.2 Cost Model Current Commercial MEA (Gore)

1.2.1 Model generic decal lamination process 1.2.2 Perform raw material sensitivity analysis

2.1 Mechanical Modeling (UD)

2.1.1 Layered model development2.1.2 RH & time-dependent mechanical testing

2.2 Conditioning Model Development (UTCP)

2.2.1 Assess existing models for applicability to conditioning mechanisms2.2.2 Adapt & refine model for conditioning and validate with experimental data Complete Complete Complete Complete

90% Complete 50% Complete

20% Complete 5% Complete

Complete

Technical Accomplishments: Power Density Baseline Testing

performance at rated power (~1,000 mA/cm² @ 0.6V)

Greative Technologi

Technical Accomplishments: Accelerated Mechanical Durability Baseline

Gore N₂ RH Cycling Protocol:

Tcell (C)	Pressure (kPa)	Flow (Anode/Cathode, cc/min)
80	270	500 N ₂ / 1000 N ₂

- Cycle between dry feed gas and humidified feed gas (sparger bottle temp = 94 C)
- Dry feed gas hold time: 50 sec.
- Humidified feed gas hold time: 10 sec.
- For further information, reference:
 W. Liu, M. Crum
 ECS Transactions 3, 531-540 (2007)

Technical Accomplishments: 9,000 Hour Membrane Durability in 80°C Duty Cycle

Table 3.4.11 Technical Targets: Membranes for Transportation Applications					
Characteristic	Units	2005 Status ^ª	2010	2015	
Durability with cycling At operating temperature of <u><</u> 80°C At operating temperature of >80°C	hours hours	~2,000 ° N/A °	5,000 ^f 2,000	5,000 ^f 5,000 ^f	
Oxygen cross-over ^b	mA / cm²	5	2	2	
Hydrogen cross-over ^b	mA / cm²	5	2	2	

Technical Accomplishments:

3L MEA Manufacturing Process Cost Model

Preliminary cost model results indicate that a new 3L MEA process has potential to reduce MEA cost by 25%

Process Waste Map

Membrane Coating

Process Costs	Primary forms of waste	Modeled Process Improvements
lonomer solution	line losses, edge trim, membrane thickness	Membrane thickness reduction
ePTFE	edge trim	
Backers	all backers	No backers
Solvent/disposables	all	
Process/MOH	time	
DL	time	

Electrode Coating

Process Costs	Primary forms of waste	Modeled Process Improvements
Catalyst	line losses, edge trim, electrode residuals	Reduce scrap with better coating process
Backers	all backers	No backers
Solvent/disposables	all	
Process/MOH	time	
DL	time	

3 Layer Roll-Good Finishing Operations

Process Costs	Primary forms of waste	Modeled Process Improvements	
Electrode	edge trim	Eliminate this process	
Membrane	edge trim	Eliminate this process	_
Process/MOH	time	Eliminate this process	COD
DL	time	Eliminate this process	

Technical Accomplishments: Conditioning Model Development

Effect of change of CL ionomer content (*Base* = 0.21) on PEFC performance with air and oxygen operation (oxygen gain) Model captures various polarization losses, flooding phenomenon etc for a <u>solid-plate configuration</u>.

Key physics for conditioning are being incorporated in the model

- Contaminant poisoning & contaminant oxidization
- Interfacial resistance
- Ionomer hydration and swelling

Technical Accomplishments: Mechanical Modeling

- Method for determining quasi-static elastic/plastic properties of membranes
- Empirical constitutive models (quasi-static properties)
- Models to calculate sorption and stresses in membranes during temperature and relative humidity cycling

A Representative Volume Element (RVE)

Polymer Matrix

σ

d

Proposed Future Work for FY09: Mechanical Modeling

- Static and time dependent (viscoelastic/viscoplastic) testing of baseline materials
- Numerical simulation of stress evolution around MEA imperfection

Proposed Future Work for FY09: Conditioning Model Development

✓Assess existing model

- Identify suitable initial model frame work for conditioning model development
- ✓ Understanding existing physics and code structure
- Conditioning analysis
 - Obtain/analyze base line MEA data from Gore
 - Add additional conditioning physics in the model
 - Calibrate/validate model
- Parametric study
 - Identify critical parameters
 - Modify critical parameters to devise/recommend new conditioning protocols

Proposed Future Work for FY09: MEA Process Equipment Scale-Up & Qualification

 Laboratory-scale equipment which has the potential to achieve the MEA process cost reductions determined by the cost model will be specified, procured, & qualified

Collaborations

- UTC Power MEA Conditioning Modeling
 - T. Madden & M. Khandelwal
- University of Delaware MEA Mechanical Modeling
 - A. Karlsson & M. Santare
- W. L. Gore & Associates, Inc. Project Lead
 - F. Busby

Summary (1)

 The overall objective of this project is to develop unique, highvolume manufacturing processes for low-cost, durable, high-power density 3L MEAs that require little or no stack conditioning.

• Approach:

-Reduce MEA & Stack Costs

- Reduce the cost of intermediate backer materials
- Reduce number & cost of coating passes
- Improve safety & reduce process cost by minimizing solvent use
- Reduce required conditioning time & costs

-Improve Durability

• Optimize mechanical properties of the 3L construction

-Unique Enabling Technologies

- Direct Coating: Use form *at least* one membrane-electrode interface
- Gore's Advanced ePTFE membrane reinforcement & advanced PFSA ionomers enable durable high-performance MEAs
- Modeling will be used to understand mechanical durability & conditioning mechanisms as well as new MEA optimization
- Advanced fuel cell testing & diagnostics

Summary (2)

Key Accomplishments

- Preliminary cost model results indicate that a new 3L MEA process has potential to reduce 3L MEA cost by 25%
- -<u>Baseline testing</u> of current commercial MEA is complete
 - Gore has demonstrated <u>9,000 hour membrane durability</u> (DOE 2015 target is 5,000 hours)
- Development of a layered structure <u>MEA mechanical model</u> using non-linear (viscoelastic & viscoplastic) polymer and electrode properties which will predict MEA lifetime for a variety of temperature & relative humidity cycling scenarios is underway
- Development of a fundamental <u>cell conditioning model</u> which will estimate the cell/stack break-in time is underway
- The combination of Gore's advanced materials, expertise in MEA manufacturing, & fuel cell testing with the mechanical modeling experience of University of Delaware and the fuel cell modeling experience of UTCP enables a robust approach to development of a new low-cost MEA manufacturing process

