

Manufacturing R&D

Pete Devlin

2009 DOE Hydrogen Program & Vehicle Technologies Program Annual

Merit Review and Peer Evaluation Meeting

May 20, 2009

Challenges and Milestones

Develop and demonstrate technologies and processes that will:

- Reduce cost of components and systems for fuel cells, storage, and hydrogen production
- Grow domestic supplier base

Program Milestones

- **2010**: Complete development of standards for metrology of PEM fuel cells.
- **2012**: Develop continuous in-line measurement for MEA fabrication.
- **2013**: Establish models to predict the effect of manufacturing variations on MEA performance.
- **2013**: Demonstrate pilot scale processes for assembling stacks.

RPI's work on ultrasonic welding for MEA pressing.

Near Term Goal for Early Markets

 Lower fuel cell stack manufacturing cost by \$1,000/kW (\$3,000 to \$2,000/kW)

Budget

Bi-polar plate manufacturing (SBIR)

* \$678K was funded by the Fuel Cell R&D Team in FY 2008.

2009 Progress & Accomplishments

Critical projects are underway with initial results.

- Analyzed fuel cell stack manufacturing method procedure, throughput time, labor time, yield, failure modes (UltraCell)
 - Investigated leak-test methods and fuel cell stack components
 - Created specification for leak-testing
- Downselected on-line GDL coating weight measurement tool (Ballard)
- Validated 2D thickness measurement on different membranes, membranes with defects (NREL)
- Demonstrated ultrasonic welding (electrodes to sub-gaskets) cycle time of less than one second; current process (heated press) cycle time is one minute (RPI)
- Tested current commercial MEA (Gore)
 - Modeled generic decal lamination process
- Modeled Composite Tank Manufacturing Costs (Quantum /Boeing)
 - Alternate Processes Filament winding (baseline), Automatic fiber placement, dry tape techniques
 - Manufacturing time and cost factors: labor, materials, equipment for specific processes

ENERGY Manufacturing Readiness Assessments

Research project assessments needed for early market applications.

<u>Manufacturing Readiness</u> <u>Levels (MRLs)</u>

- MRL 1 Manufacturing
 Feasibility Assessed
- MRL 2 Manufacturing Concepts Defined
- MRL 3 Manufacturing Concepts Developed
- MRL 4 Laboratory Manufacturing Process Demonstration
- MRL 5 Manufacturing
 Process Development
- MRL 6 Critical Manufacturing
 Process Prototyped
- MRL 7 Prototype Manufacturing System
- MRL 8 Manufacturing
 Process Maturity Demonstration
- MRL 9 Manufacturing Processes Proven
- MRL 10 Full Rate Production demonstrated and lean production practices in place

Manufacturing Readiness Assessment Consolidated Data Forklift Fuel Cell Power System Manufacture

Summary

Focus on progress toward near term cost goals for early market applications.

- Assess manufacturing readiness levels for Low Rate of Initial Production (LRIP) of 1000 units per year
- Establish Quality Assurance (QA) protocols
- Validate new processes against QA standards
- Achieve quantified near term cost targets

Ultracell modular fuel cells

For More Information

Manufacturing Team

Pete Devlin (202) 586-4905 peter.devlin@ee.doe.gov

Support

Jason Marcinkoski 202-586-7466 jason.marcinkoski@ee.doe.gov Monterey Gardiner (202) 586-1758 monterey.gardiner@ee.doe.gov

Field Office Project Officers:

Jesse Adams Dave Peterson Reg Tyler Lea Yancey

Technical Support:

George Sverdrup (NREL) Mike Ulsh (NREL) Doug Wheeler (NREL)