2009 DOE Hydrogen Program

Hydrogen Generation from Biomass-Derived Carbohydrates via the Aqueous-Phase Reforming Process

Bob Rozmiarek Virent Energy Systems, Inc May 19th, 2009 Project ID # PD_03_Rozmiarek

This presentation does not contain any proprietary, confidential, or otherwise restricted information

VIRENT

Overview

Timeline

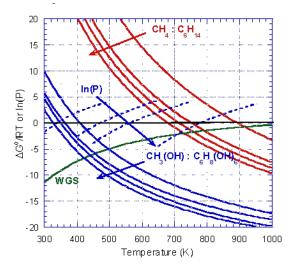
- Start September 2005
- Finish September 2009
- Percent complete ~ 85%

Budget

- Total project funding
 - DOE share 1,954 K
 - Contractor share 676 K
- Funding received in FY2008 1,125k
- Funding for 2009 415 k

Barriers

Barriers Addressed		
A) Reformer Capital Cost	C) O&M	
D) Feedstock Issues	E) Greenhouse Gas Emissions	
Targets	2012	2017
Production Unit Capital Cost	\$1 million	\$600 k
Feedstock Cost Reduction	\$2.10 / gge	\$1.55 / gge
Total H ₂ Cost	\$3.80 / gge	< \$3.00 / gge


Partners

- Interactions/ collaborations
 - ADM
 - University of Wisconsin

Renewable Hydrogen Production Using Sugars and Sugar Alcohols

- **Problem:** Need to develop renewable hydrogen production technologies that utilize diverse feedstocks.
- Relevance: The BioForming[®] process is a platform that enables the use of renewable sugar and sugar alcohol feedstocks for hydrogen production, reducing greenhouse gas emissions compared to traditional H₂ production technologies.
- **Description:** The process uses aqueous phase reforming (APR) to cost effectively produce hydrogen from a range of feedstocks. The key breakthrough is a proprietary catalyst that operates in the aqueous phase and has high hydrogen selectivity at low temperature.
- Impact: Sugars and sugar alcohols are capable of producing hydrogen for \$2 to \$4/gge.
- **IP Position:** Exclusive worldwide licenses have been granted, multiple new patent applications placed, and solid trade secret position established.

10 kg/day Hydrogen Pilot Plant

Objectives

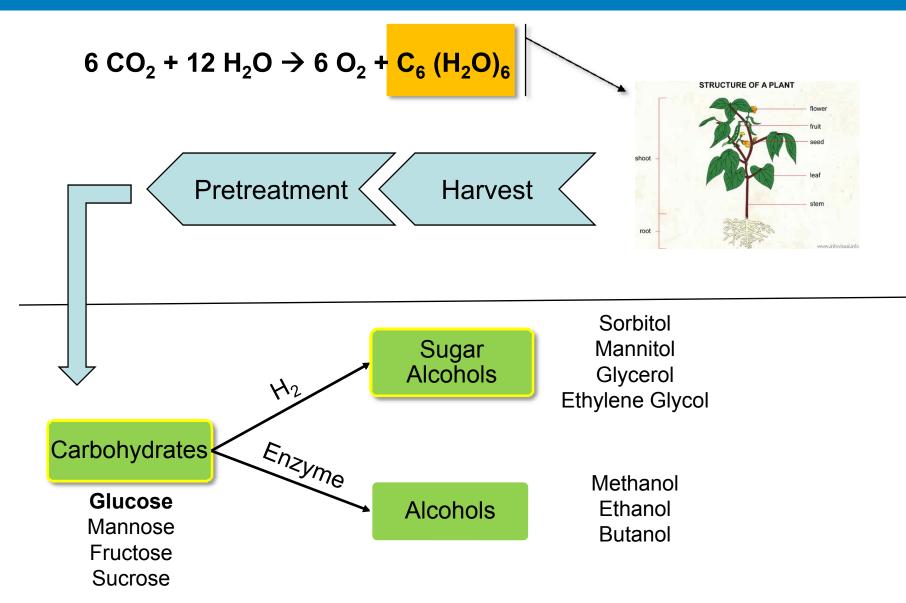
Overall	Design a H_2 generating system that uses low cost sugars or sugar alcohols that can meet the DOE H_2 cost target of <\$3 / gge for 2017.
	Complete an initial reactor design and process definition for a 10 kg/day demonstration system
2008/2009	Continue fundamental catalyst development and analysis to increase the thermal efficiency of the APR system
	Continue development of the APR catalyst and reactor system that converts glucose to hydrogen
	Complete hydrogenation fundamental study(UW)
	Interact with PNNL on data exchange and fundamental surface science study
	Operate reactor development pilot plant (scale-up testing)
	Develop initial PFD and catalytic reactor design for 10 kg/day demonstration system
	Review techno-economic performance of the APR system

2008/2009 Milestones

✓ Fundamental Catalysis Review

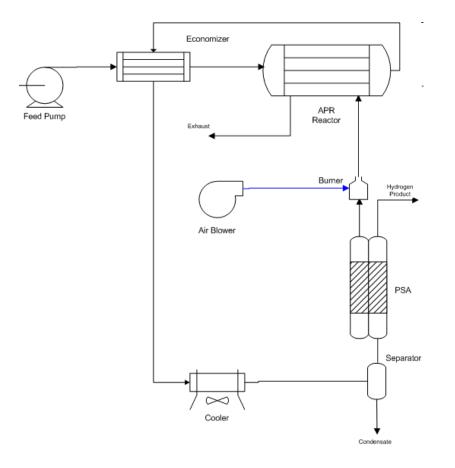
✓ Hydrogen Production Tech Team (HPPT) Visit & Program Review

Completion of UW-Madison Catalyst Studies

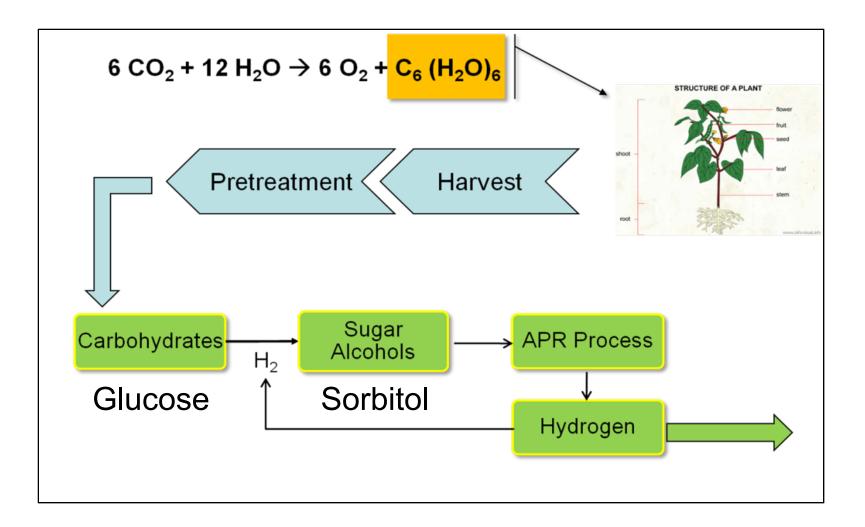

Reactor Development Unit Testing

Catalyst Evaluation

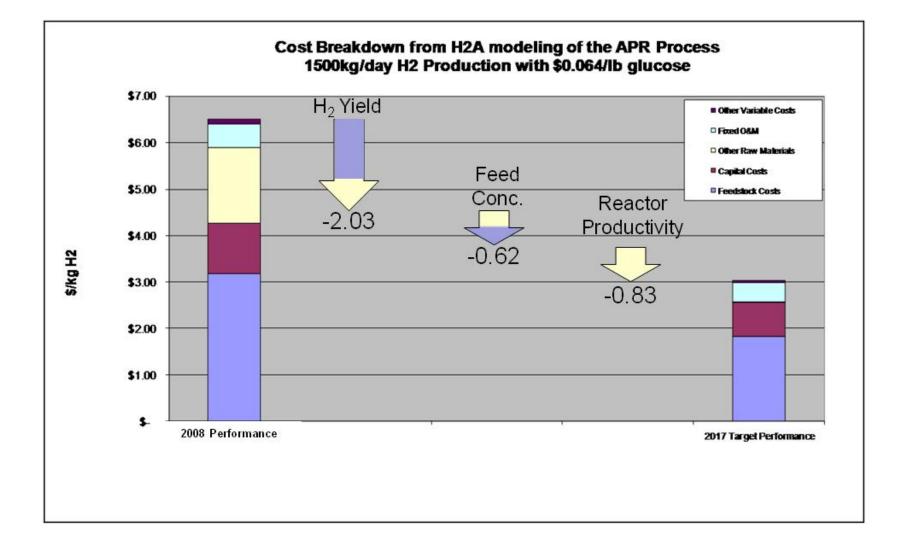
- Initial Reactor Design and PFD for 10 kg/day Demonstration
- Re-evaluation of Technology Progress versus DOE H₂ Program Goals


Technical Approach Biomass Derived Liquids

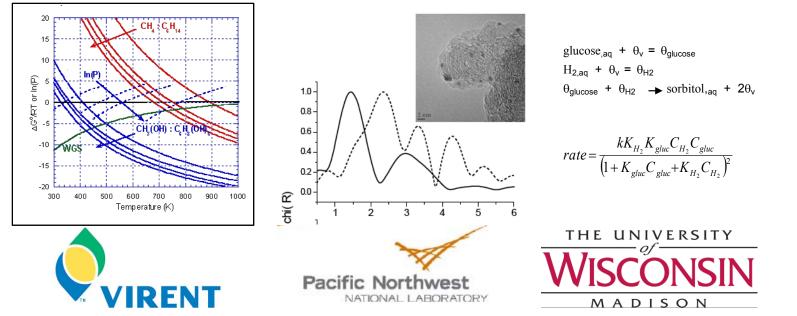
Hydrogen Production using the BioForming Process



- Simple Catalytic Process
 - No Water Gas Shift
 - No Steam System
 - No Gas Compressor
 - No Desulphurizer
- Energy Efficient
- Scalable
- Feedstock Flexible


Technical Approach – Glucose

2008 Cost Breakdown – H2A

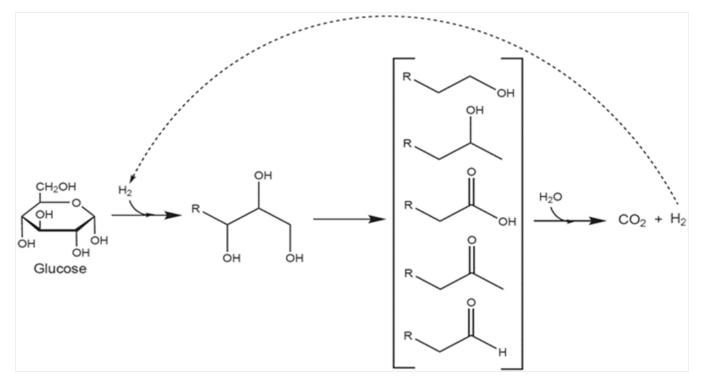


Fundamental Experimental Fronts

- APR Fundamentals
 - Detailed Chemistry Pathway Development (Virent)
 - Detailed Metal and Support Chemistry Development (Virent)
 - Thermodynamic Relationships Preferred Chemical Routes (Virent)
 - Detailed Catalytic Surface Science (PNNL)
- Glucose Hydrogenation Fundamentals (UW-Madison)

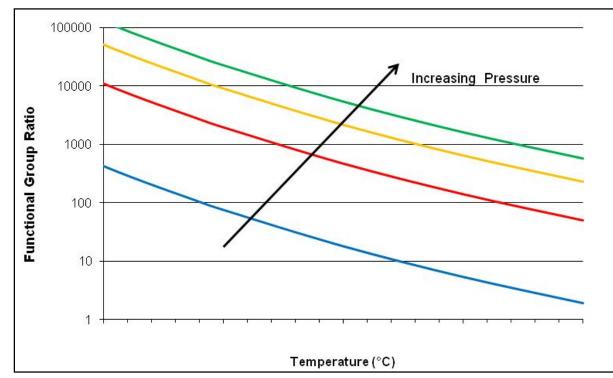
10

Hydrogenation Fundamentals

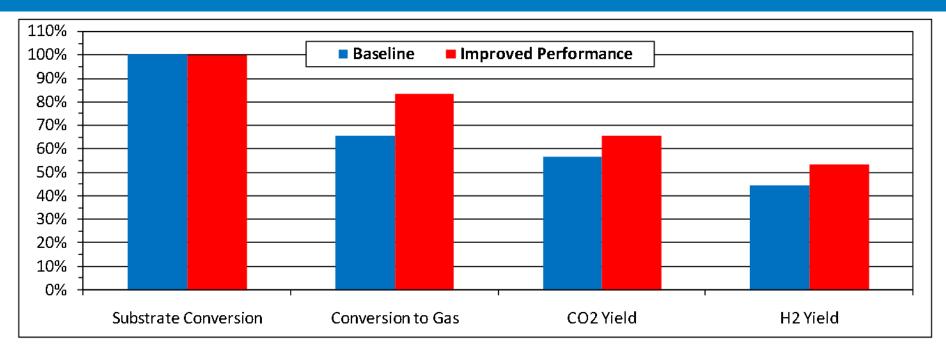


- Study focused on detailed catalytic activity and kinetic modeling for the hydrogenation of glucose to sorbitol
- Catalyst Characterization
 - 2.5 wt% Ru/C
 - 44% dispersion
- Apparent Reaction Orders
 - Glucose = 1
 - Hydrogen = 0.7
- Apparent Activation Energy (55 kJ/mol)
- Effect of Gluconic Acid Exposure
- Kinetic Modeling
 - Surface reaction activation energy
 - Enthalpy and entropy of adsorption for glucose and hydrogen
 - Best fit kinetic model established

APR Chemistry Fundamentals

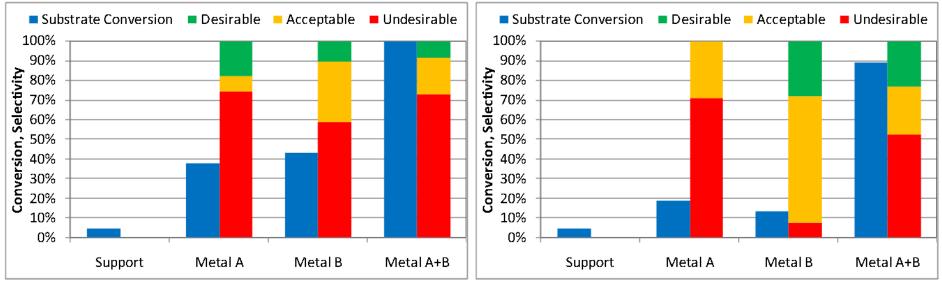

- Detailed chemical reaction pathways have been developed through in-depth investigation of the APR process
- Identified intermediate species detrimental to optimum H₂ production
- Identified preferred chemical routes for high efficiency production of H₂ from glucose

Thermodynamics Fundamentals



- Identified preferred and detrimental chemical routes for the high efficiency production of H₂ from glucose
- Reviewed thermodynamic equilibrium of various compound functionalities
- Thermodynamics led to the investigation of a potential optimized reaction regime

Benchmark Performance



- Fundamental review of chemical pathways led to greater understanding of desired pathways and associated thermodynamics
- Optimization of operating conditions
- Improved H₂ yield and conversion to gas
- >10% reduction in H_2 cost

Catalyst Fundamentals – Model Components

Model Compound 1

Model Compound 2

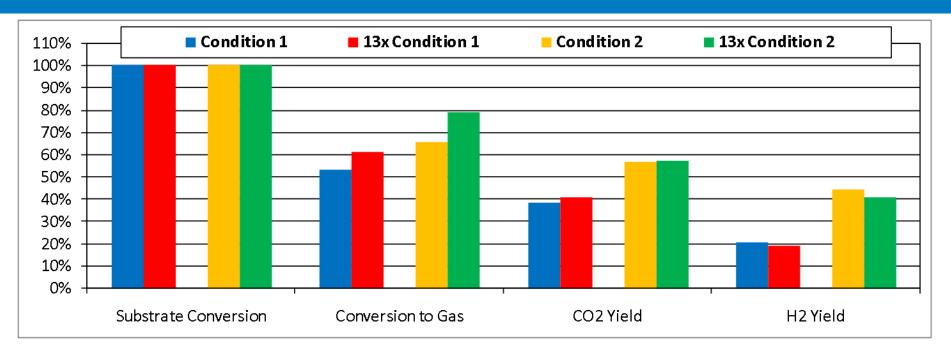
- Model compounds utilized to provide very detailed understanding of reaction
- Functionalities investigated using specific model compounds
- Conversion vs. Selectivity
 - Catalyst and Substrate functionality affect reaction
 - Compound 1 more active but towards undesirable products
 - Metal A+B most active but minimal selectivity towards acceptable and desirable
- PNNL fundamental surface science

Hydrogen Pilot Plant Development

Catalyst Development Unit Develop

Reactor Development Unit

Scale-Up



Process Development Unit (PDU)

Reactor Scale Up

- Heating Media Heat provided by heating fluid versus electric
- Reactor Dimensions Increased tube diameter and length
- Instrumentation Increased level in conjunction with heating media allows for the determination of heat transfer coefficients
- Demonstrated ability to scale up reactor 13x while maintaining similar H₂ performance and enhanced conversion to gas

2008/2009 Accomplishments

- Glucose to H₂ Fundamentals
 - Developed detailed catalytic and kinetic information for hydrogenation
 - Developed detailed information for the APR system
 - Preferred Chemistry Pathways
 - Thermodynamics
 - Metal and Support Functionality
- APR Process Development
 - Identified optimized operational regime for the APR reaction
 - Increased H₂ Yield
 - Increased Conversion to Gas
 - Completed reactor scale-up operation
 - Maintained H₂ Yield and Increased Conversion to Gas
 - Obtained information required for demonstration scale reactor design
 - Reduced cost of H_2 production > 10% (H2A Basis)

Future Work Plan

- Continue evaluation of APR catalysts and reactor system that converts glucose to hydrogen with focus on increasing system efficiency.
- Complete initial reactor design and associated PFD for 10 kg/day demonstration system
- Review techno-economic performance of the APR system utilizing the updated H2A platform
- Re-evaluate the technology progress versus DOE H₂ program goals
- Continue interaction with PNNL on fundamental surface science
- Final Project Reporting and Close-out

Overall Project Summary

- APR
 - A promising and cost competitive technology for the production of renewable $\rm H_2$
 - Technology development still required to reach DOE cost targets
- Techno-Economic Analysis
 - Development pathways identified to reach 2012 and 2017 goals
 - Identified most cost sensitive aspects and continuing to improve
 - H₂ Yield
 - Feed stock concentration
 - Reactor productivity
- Catalyst Development
 - Technology Progress to Date
 - >10 X reduction in hydrogen cost
 - 700 X scale-up reactor demonstrated