Solar Cadmium Hydrogen Production Cycle

Bunsen Wong, Lloyd Brown and Bob Buckingham (General Atomics) Roger Rennels and Yitung Chen (UNLV)

DOE Hydrogen Program Annual Merit Review 5/19/2009, Crystal City, VA

IFT\P2009-018

Project ID: pd_08_wong

This presentation does not contain any proprietary, confidential or otherwise restricted information

The solar cadmium-hydrogen cycle has a calculated efficiency of 59% (LHV)

Cycle has no waste effluent Only heat and water are required as inputs

Cadmium Oxide Cycle

Overview

Timeline

Start Date: Jan 2006 End Date: Oct 2009 95% completed

Budget

DOE Total: \$1.26M GA Total: \$0.49M FY08: \$380K (\$197K) FY09: \$210K (\$110K)

Barriers

- U. High Temperature Thermochemical Tech.
- V. High-Temperature Robust Materials
- X. Coupling Concentrated Solar Energy and Thermochemical Cycles

Partners

University of Nevada, Las Vegas

Project Objectives and Approach

- To demonstrate the feasibility and economics of a solar cadmium hydrogen cycle
 - Validate the key reaction steps with experiments
 - Establish design concepts for process steps based on experimental data
 - Integrate process design concepts and solar field design into a flowsheet for a solar hydrogen plant

Metric	Unit	2008	2012	2017
$H_2 \cos t$	\$/kg H ₂	10.00	6.00	3.00
Efficiency (LHV)	%	25	30	>35

Technical Approach

CdO decomposition	Determine the decomposition kinetics under various carrier gases
Cd vapor quenching	Measure the Cd-O ₂ vapor reaction rate and determine the required quench rate
	> Determine via modeling if quenching is practical
H ₂ generation	Applied mechanical and chemical means to achieve fast hydrogen generation kinetics
Economics	Design flowsheet using most probable process routes
	Design solar field, reactor and plant
	Integrate hydrogen and solar plant for H2A analysis

Milestones and Accomplishments

Milestone	Accomplishments	%Comp
Demonstrate CdO decomposition	 Effect of carrier gas on decomposition kinetics established Sub 1150°C decomposition demonstrated 	100
Measure Cd-O ₂ reaction rate	Reaction rate wrt temperature and O ₂ concentration measured	100
Demonstrate H ₂ generation with Cd	Demonstrated two pathways to use either molten or solid Cd to generate H ₂	100
Modeling of Cd vapor quench	Modeling studies of vapor quench on going	50
H2A Analysis	 Process flowsheet and solar field design completed Preliminary H₂ cost established 	95

The CdO decomposition rate is a function of carrier gas and temperature

The decomposition is controlled by the back reaction and oxygen diffusivity

CdO Decomposition

CdO decomposition temperature was further reduced with slow heat rate

The lower decomposition temperature will reduce solar field requirements

CdO Decomposition

Decomposition is very sensitive to O_2 diffusivity and back reaction

Gas	E _a (kJ/mole)
Ar	248 ± 6
He	241 ± 10
CO_2	268 ± 8
Air	363 ± 10
O ₂	384 ± 4

 $d\alpha/dt = k_o \cdot exp(E_\alpha/RT) \cdot (1-\alpha)^n$ Galwey & Brown

CdO(s) → Cd(g) + ½O₂(g)
 Theoretical E_a is 241 kJ/mole
 Back reaction in O₂ rich environment leads to higher apparent E_a

Sample (mg)	Ea	k *
33.6	250.5	7.48E-01
65.7	237.3	9.13E-03

- E_a is configuration independent
- k* is strongly gas diffusion dependent

 $k^* = k_o \cdot exp(E_a/RT_o)$

CdO Decomposition Data

CdO baseline decomposer design utilizes a fluidized bed design

- > This design concept fits with a beam down solar tower
- Secondary concentrators and windows are employed
- > Atm. air is used as carrier gas to fluidize the particle

CdO Decomposer Design Concept

The cadmium oxygen reaction rate was measured using a TGA

- Cd and O₂ flow through the furnace and react
- Gases are quenched after the reaction zone
- Reaction rate was calculated using:
 - O₂ reduction
 - Cd evap. Rate
 - Time of travel

Cd-O₂ Recombination Experiment

A Mass Spec. measures the amount of O₂ that has been reacted

Measurements for temperature between 700-1400°C have been made

Cd-O₂ Reaction Measurements

The measured reaction rate falls between 1 to 6% Cd reacted per second (800-1400°C)

- Preliminary result give best fit with the experimental results at m = 0 and n=0.18
- Model implies Cd and O₂ recombination is not sensitive to the amount of oxygen present
- Modeling of the quench process based on the reaction rate is in progress

A rotary kiln was used for molten Cd hydrolysis to maximize steam-molten contact

WC pellets added to splatter molten Cd to increase surface area

Molten Cd Hydrolysis

CdO particles formed by the molten Cd-steam reaction ranges from 1 up to 10 microns in size

CdO particles were carried out of the reactorSize range suitable for fluidizing

Hydrogen Generation w/ Molten Cd

Hydrogen yield is enhanced by increasing the surface area of cadmium for reaction

Theoretical steam to H₂ conversion of 3% can be achieved by using a pressurized rotary kiln with means to maximize cadmium-steam contact

Hydrogen Generation w/ Molten Cd

Baseline flowsheet using air as carrier gas has been established (Efficiency 58% LHV)

On Sun Hours: CdO decomposition and Cd vapor quench 24 Hours: Hydrogen and Electricity generation

Solar Cd-H₂ Cycle Flowsheet

A solar plant has been established for the cadmium hydrogen cycle

> On ground reactor
 > 100,000 kg H₂/day
 > 10 towers 72MW

Base case 2015 \$4.46/kg H₂

Parameter	High – Low	High – Low (H ₂)
Heliostat	\$176 – 92 /m ²	\$4.94 - \$4.02
Capacity	90 – 60 %	\$3.74 - \$5.53
Plant Capital	-25 - +25 %	\$4.77 - \$4.15

Solar Field Design and H₂ Cost

Summary

Objective	Determine the feasibility and economics of a solar cadmium hydrogen cycle
Approach	Process steps experimental verification → Process concepts and flowsheet design → Solar plant design → Plant integration and H2A Analysis
Technical Accomplishments	 Established a CdO decomposer design concept Measured the Cd-O₂ vapor reaction rates Demonstrated an approach to using molten Cd to generate hydrogen Completed a preliminary solar cadmium hydrogen plant design
Future (FY09)	Complete Cd vapor quench modeling studies

Future Work

CdO decomposition	 CdO decomposer prototype testing using a simulated solar source – fluidization and materials handling Decomposition of CdO from hydrolysis process
Cd vapor quenching	 Study the effect of quench rate on Cd-O₂ recombination Measure the molten cadmium – oxygen reaction rate
H ₂ generation	Conduct molten cadmium hydrolysis under pressure
Economics	Closed system using helium as carrier gas - process flowsheet and economics studies

Future Work

