

Solar-thermal Ferrite-Based Water Splitting Cycles

May 19, 2009

Jonathan Scheffe, Melinda M. Channel, Alan W. Weimer

Department of Chemical and Biological Engineering University of Colorado at Boulder.

Project ID No. PD_10_Weimer

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- 6-1-2005
- 9-30-2010
- 75% completed

Budget

Total Project Funding

\$900,000 DOE

\$225,000 Cost share

•Funds received in FY09

\$ 0

Barriers

U. High-Temperature Thermochemical Technology

V. High-Temperature Robust Materials

W. Concentrated Solar Energy Capital Cost

X. Coupling Concentrated Solar Energy and Thermochemical cycles

Partners

Swiss Federal Research Institute (ETH Zurich)

Objectives

- Research and develop a cost effective (\$4/kg H₂ at plant gate) ferrite-based solar-thermal thermochemical water – splitting cycle through theoretical and experimental investigation
- Based on the above, develop a process flow diagram and carry out an economic analysis of the best process option

Relevance – Simple 2-Step Thermochemical H₂O Splitting Cycle

Co₃O₄ Redox Thermodynamics

CoFe₂O₄ Redox Thermodynamics

Approach - Free Energy Minimization Theoretical Limit (P = 0.001 Mpa)

 Particle ALD will provide for ultra-high surface area ferrite materials having enhanced reaction rates

Approach - ALD of Co_xFe_{3-x}O₄

Results - In Situ Mass Spectrometry – Particle ALD Synthesis of CoFe₂O₄

Results - Self Limiting Cobalt Oxide Chemistry

Results – Self-limiting iron oxide ALD; Energy Dispersive Spectroscopy (EDS) Confirms the Presence of Iron

TEM Image of CoFe₂O₄ on Porous ZrO₂ Support

Water Splitting Reactor

A COLOR OF C

Results - Conversion is Greater for ALD samples

Results - Maximum Conversion Observed with a Co Stoichiometry Near 1.0

Approach - Demonstrate One Low-T Redox Cycle for CoFe₂O₄ (alumina support)

Results - Samples are Stable After 8 Cycles

Approach – General Economics

- Central Production Facility supplying H₂ at 300psig
- Produce 100,000 kg H₂/day, operating 8 hours/day, 365 days/yr.
- Calculate the necessary solar field requirements using Soltrace based on AspenPlus[™] simulations and measured irradiance data for Daggett, CA (annual average).
- Evaluate a base case and byproduct case for 35%, 70%, and 100% theoretical maximum conversions of NiFe₂O₄ in the solar reduction step.
- Size and cost all capital items for variable production rates; Estimate operating costs in line with the general H2A assumptions
- Base case provides for no byproducts and no carbon avoidance credits
- O2 and electricity are produced in the byproduct case and will be sold for allowable H2A credit; no carbon avoidance credits
- Back-calculate the allowable capital cost of NiFe₂O₄ for all cases to produce H₂ having an H2A selling price of targeted \$4, \$7 and \$11/kg H₂

Major Operating Assumptions

- 2008 Case
 - \$180/m² heliostat cost
- 2012 Case
 - \$140/m² heliostat cost
- 2017 Case
 - \$80/m² heliostat cost
- No heat recovery between redox steps

- By-product cases
 - O₂ sold for \$0.02/kg (H2A)
 - Electricity (heat removal) sold for \$0.07/kWhr (H2A)
 - No carbon avoidance credits
- Solar Reactor
 - 1400°C
 - O₂ removed with vacuum pump system
 - moving bed of ferrite within Silicon Carbide tubes
 - 8 cycles per day

Approach - Base Case Process Flow Diagram

Results - AspenPlus[™] Base Case

Results – Solar field design

Solar field design by Mr. Allan Lewandowski

- 100,000 kg/day H₂; 70% conversion NiFe₂O₄
- 2,821 GWhr/yr required, Daggett, CA (annual η = 43.6%)
- Five 258 m tall towers; [CPC] = 3x; 3 fields/tower
- 2.33 Million m² total heliostat area
- C = 3868 suns net concentration, receiver T = 1400°C
- Requires 261 acres of land
- 280 Mw_{th} power to each solar reactor

2017 Capital Cost Breakdown

Base Case TCI \$605M 70% Conversion H2 \$4/kg Allowed Ferrite Cost: \$57/kg

<u>Current Material Costs:</u> NiO \$22/kg Fe₂O₃ \$2/kg Then, NiFe₂O₄ \$8.67/kg

2017 Capital Cost Breakdown

<u>By-product Case</u> TCI \$654M 70% Conversion H₂ \$4/kg Allowed Ferrite Cost: \$69/kg

<u>Annual Revenue:</u> H₂: \$146M (93%) O₂: \$5.8M (4%) 7.94 kg/kg H₂ Electricity: \$5.2M (3%) 1.99 kWhr/kg H₂

70% Conversion Ferrite Purchase Cost

H2 Selling Price (\$/kg)

Results - Ferrite Cost (\$/kg)

Allowable Ferrite Purchase Cost (\$/kg)

		H2 Selling Price (\$/kg)	35% Reduction Conversion	70% Reduction Conversion	100% Reduction Conversion
Base Case	2008	\$11	\$107	\$296	\$459
	2012	\$7	\$37	\$148	\$244
	2017	\$4	\$5	\$57	\$107
By-product Case	2008	\$11	\$116	\$308	\$474
	2012	\$7	\$47	\$160	\$258
	2017	\$4	\$14	\$69	\$122
Byproducts	Electricity	/ (kWhr/kg H2)	4.42	1.99	1.27
	02 (kg/kg H2)		7.94	

Results – Cycle Efficiencies

		Reduction Conversion		
		35%	70%	100%
Base Case	LHV	31.7%	43.1%	48.4%
	HHV	37.4%	50.9%	57.1%
By-product Case	LHV	35.8%	45.8%	50.2%
	нну	41.5%	53.5%	58.9%

Summary

- The nickel ferrite water-splitting cycle appears to meet the 2017 \$4/kg H₂ plant gate DOE solar thermochemical target and is potentially the most economical solar process evaluated to date.
- Ferrite materials based on Particle-ALD react faster and at lower temperatures (most likely due to a reduction in diffusional resistances), reducing materials of construction concerns and cycle times
- More experimental work needs to be completed to verify the reactions and conversions.

- Compare ALD produced CoFe₂O₄, NiFe₂O₄ and ZnFe₂O₄ ferrites experimentally
- Demonstrate ability to cycle ALD-based ferrites through multiple redox reactions
- Evaluate methods for producing low cost ALD ferrite materials using non-ZrO2 high surface area substrates
- Development of stationary processing methods with superior heat integration and simplicity suitable for large-scale processing

- ETH-Zurich (Swiss Federal Research Institute)
 - ETH students & facilities involved
- Sandia / NSF
 - PhD student spent two summers working in their lab (\$25M
 Grand Challenge interested in ALD ferrites)
- ALD NanoSolutions, Inc. (Broomfield, CO)

 agreed to produce larger quantities of ALD ferrite materials for the project

• Sundrop Fuels (Louisville, CO)

- interested in on-sun demonstration at their solar pilot facility

- DOE Hydrogen Production Program
- Dr. Mark Allendorf and Dr. Tony McDaniel, SNL
- Mr. Carl Bingham, NREL
- Mr. Allan Lewandowski, consultant
- Prof. Aldo Steinfeld, ETH Zurich

Supplemental Slides

Approach - More FeO generated with CoFe₂O₄

Approach - more H₂ generated with CoFe₂O₄

Results - Optimize H₂O Flow

Results - [H₂O] Affects Oxidation Rate

Results - Largest H₂ Responses (μmoles H₂) seen at Highest [H₂O]

Results - 1200°C Reduction/800°C Oxidation

NiFe ₂ O ₄ (from SB Han 2007) – Solid state synthesis	1.97 E-5 moles H ₂ /gram ferrite
$CoFe_2O_4(9\% \text{ loading})$ on Al_2O_3 - ALD	1.89 E-4 moles H ₂ /gram ferrite
Completely achieving thermodynamic limit for $CoFe_2O_4$ reduction	2.5 E-3 moles H ₂ /gram ferrite

~10X H_2 generation relative to solid state synthesis

Results - Annual Reduction Energy Requirements

$$\label{eq:starsest} \begin{split} \text{NiFe}_2\text{O}_4 &\rightarrow 1.2 \text{ FeO} + 0.4 \text{ Fe}_2\text{O}_3 + \text{NiO} + 0.3 \text{ O}_2 \\ \Delta\text{H}_{\text{rxn}} &= 214,612.9 \text{ J/mol} \ \text{(FactSage}^{\text{TM}} \text{ results at } 0.1 \text{ MPa \& } 1400^{\circ}\text{C}) \end{split}$$

Solar Reactor	Reduction Conversion				
(GWhr/yr)	35%	70%	100%		
Heat of Reaction	1,799	1,799	1,799		
Sensible Heat	2,044	1,022	715		
Total Energy Required	3,843	2,821	2,514		

Cavity operates at ~3,800 suns, losses are primarily radiative.