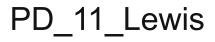


... for a brighter future



UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

R&D status for the Cu-Cl thermochemical cycle

Michele Lewis Argonne National Laboratory May 19, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

<u>Time Line</u>

- Start date: 10/07
- End date: ?
- % complete: 30%

<u>Budget</u>

- \$98K for FY09
- Complementary program supported by DOE-EERE
 - \$939K from FY06 to FY08

Barriers

- G. Capital Cost
- H. Efficiency
- AU. High temperature thermochemical technology

Partners

- International Nuclear Energy Research Initiative (INERI)
 - Atomic Energy of Canada Ltd and six Canadian universities
- Nuclear Energy Research Initiative-Consortium (NERI-C)
 - Three US universities

Relevance: objective and rationale for R&D

- Develop a <u>commercially viable</u> process for producing hydrogen based on a thermochemical cycle that meets DOE cost and efficiency targets
- Cu-Cl cycle chosen
 - Current Aspen flowsheet indicates possible to meet the targets if assumptions can be validated
- Features that promote meeting targets
 - The 550C maximum temperature reduces demands on materials
 - Couples with various heat sources: solar power tower, Na-cooled fast reactor and supercritical water reactor
 - Yields near 100% in hydrolysis and oxychloride decomposition <u>without</u> catalysts-no recycle streams in these reactions
 - Conceptual process design uses commercially practiced processes
 - Preliminary H2A analysis indicates H₂ production costs are within range of 2025 target if assumptions validated

Approach/Milestones

Experimental program

- Focus on hydrolysis reaction
 - Demonstrate high conversions and free flowing product powders
- Focus on advanced electrochemical technologies with NERI-C partners

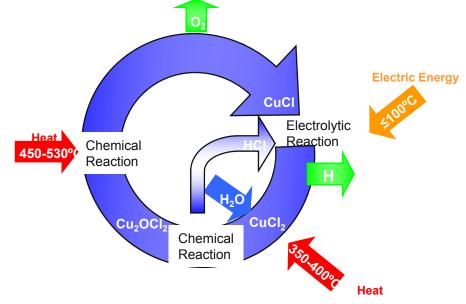
Modeling program

- Develop flowsheet
 - Estimate efficiency and capital costs
- Use H2A methodology for H₂ production costs

		Task Comp			
Project Milestones	Original Planned	Revised Planned	Actual	Percent Complete	Progress Notes
Define Optimum Conditions for Hydrolysis Reaction			12/20/2008	100%	Completed for given funding level
Define Optimum Conditions for Electrolysis Reaction	12/21/2007	08/10		20%	Higher operating temperatures, stirring, prevent Cu crossover; Work stopped
Verify Non-Int. Cycle in Lab	8/19/2008	08/11		5%	Work stopped
Complete cost analysis	4/15/2007	3/31/2008		75%	Optimization ongoing

Approach: Study individual reactions & complete preliminary economic analysis

Hydrolysis reaction


- $2CuCl_2 + H_2O \Leftrightarrow Cu_2OCl_2 + 2HCl$
- Optimize conditions for high yields and free flowing powders

Oxychloride decomposition

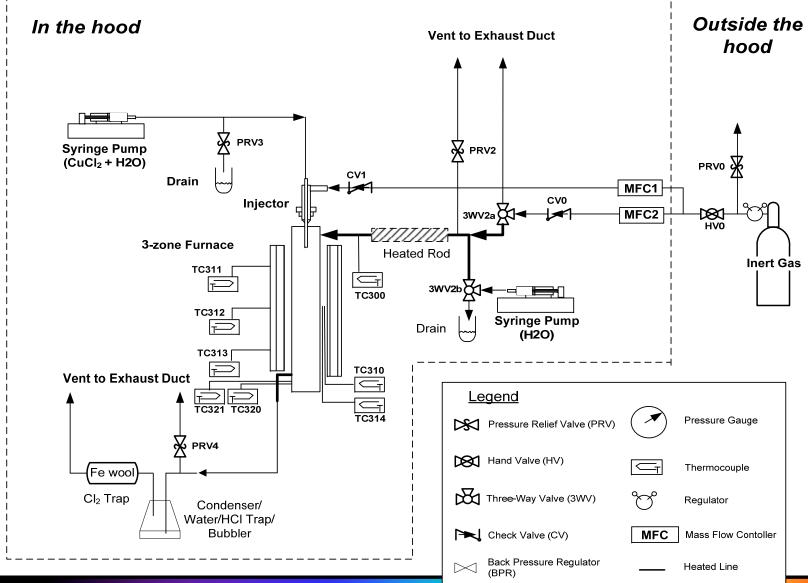
- $Cu_2OCl_2 \Leftrightarrow 2CuCl + \frac{1}{2}O_2$
- Maximum temperature reaction

Electrolysis (simplified)

- $2CuCl + 2HCl \Leftrightarrow 2CuCl_2 + H_2$
 - Anode: 2Cu⁺ ⇔ 2Cu²⁺ + 2e⁻
 - Cathode: $2H^+ \Leftrightarrow H_2$

- Separation methods to treat spent anolyte and catholyte
 - R&D just started

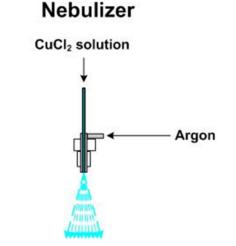
Hydrolysis rxn: $2CuCl_2 + H_2O \Leftrightarrow Cu_2OCl_2 + 2HCl$


Early experimental results in fixed bed reactors showed up to 25 wt% CuCl and unreacted CuCl₂ in products, even with large excess of water

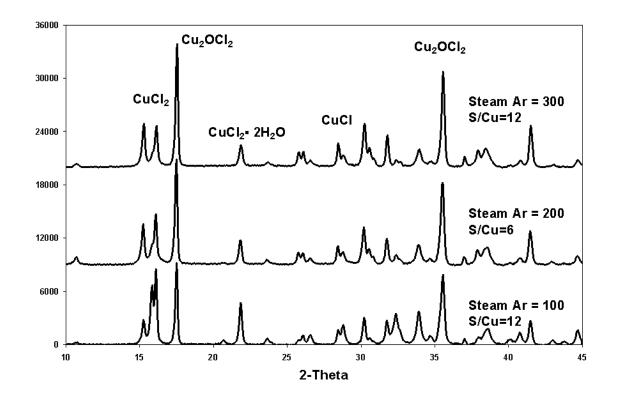
For a cyclic process:

- Obtain high yields (~100%) of products, HCl and Cu_2OCl_2
- Prevent competing reactions
 - CuCl₂ can decompose to give chlorine but this reaction can be avoided by choice of operating conditions
 - *Cu*₂OCl₂ decomposes to give oxygen (not a showstopper)
- For an efficient and low capital cost process
 - Reduce water consumption (very important)
 - Aspen predicts that 100% yield can be obtained with S/Cu = 17 at 370C
 - Use reactor design that provides best heat and mass transfer

Technical accomplishments: Design, build and test spray reactor Schematic of spray reactor (shown with nebulizer)



Technical accomplishments


Spray reactors using 'pneumatic' nebulizer and ultrasonic nozzle tested

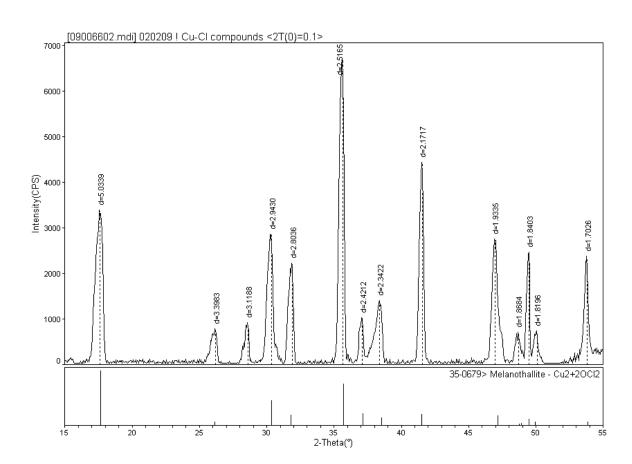
- Counter current operation with nebulizer gave good products after optimization of variables
 - Ar flowrate in nebulizer
 - Ar flowrate in superheated steam line
 - Flow rate of CuCl₂ solution
 - Temperature
- However, some unreacted CuCl₂ and some CuCl observed in x-ray diffraction patterns
- Co-current operation appears unlikely
 - Nebulizer clogs readily
 - CuCl₂ solution dehydrates in capillary tube
 - Low conversion to Cu₂OCl₂

Technical accomplishments **Experimental parameters, e.g., Ar flow rates affect yields**

Increasing Ar flow rates through the superheated steam line (or nebulizer) result in increasing yields of Cu₂OCl₂

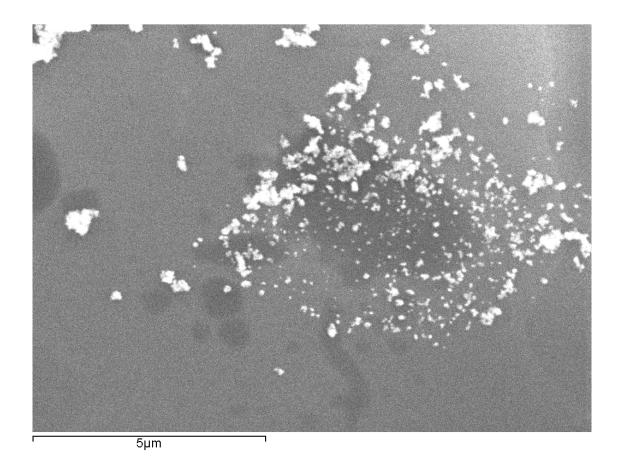
Technical accomplishments

Ultrasonic nozzle is easier to use-no clogging and gives superior conversions

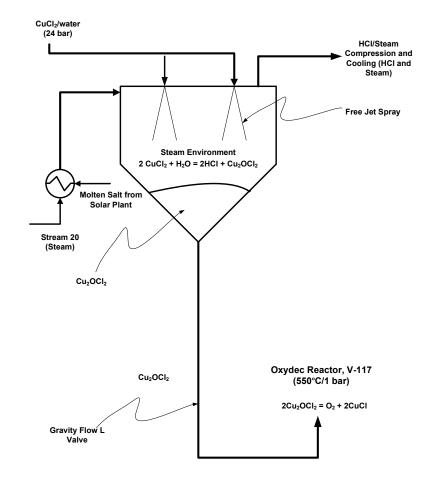

Ultrasonic Nozzle

Still some CuCl

 Assume source is Cu₂OCl₂ decomposition

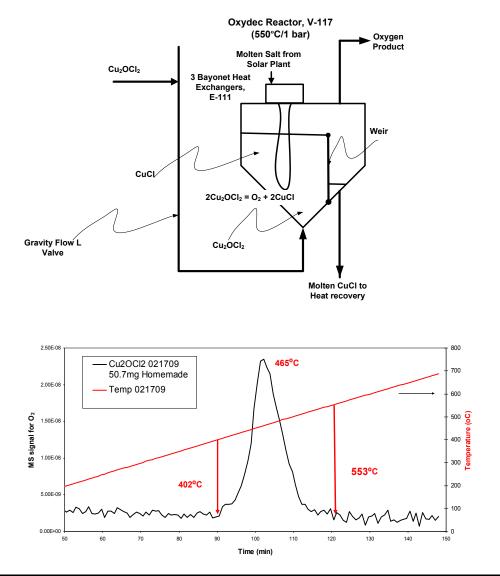

 No Cl₂ in gas phase in experiments at CEA

Thanks to Bob Evans for suggestion


Technical accomplishment Cu₂OCl₂ particles small, <100 nm to 30μm, & free flowing

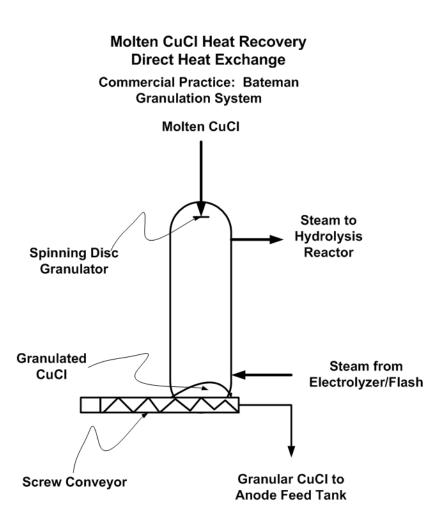
Technical accomplishment Integration of lab results with modeling activities leads to conceptual process design

- Lab: Ultrasonic nozzle provides small droplets of CuCl₂*2H₂O solution that are readily converted to Cu₂OCl₂
- Concept: Spray roaster
 - CuCl₂ slurry at 24 bar, injected into 400C steam environment at 0.25 bar
 - Drop in pressure causes slurry to be issued at supersonic velocity which promotes mass and heat transfer within the steam environment
 - No Ar carrier gas needed
 - Lower pressure (0.25 bar) results in a reduction of S/Cu & lower capital cost
 - Vacuum provided by steam injector
 - Similar to commercial operations in which HCl is recovered from spent pickling solutions



Technical accomplishment Oxychloride decomposition reactor: concept and T(max)

- Cu₂OCl₂ is free flowing
 - Transferable by gravity from the hydrolysis to the Cu₂OCl₂ decomposition reactor
 - Injection position subject to change
- Oxychloride decomposition reactor's temperature is about 550C
- CuCl is discharged as a molten salt and oxygen is released

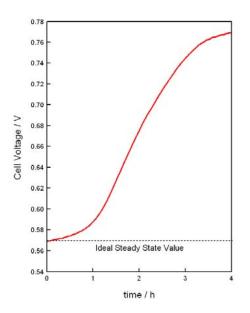

 Ultrasonically produced Cu₂OCl₂ decomposes between 400 to 550C

Technical accomplishment **Optimized heat recovery**

- Direct contact heat recovery is proposed for recovering the molten CuCl salt's enthalpy
 - Heat low temperature steam to 400C steam for hydrolysis reactor
 - Highly efficient heat transfer
 - Idea by UOIT and USC staff

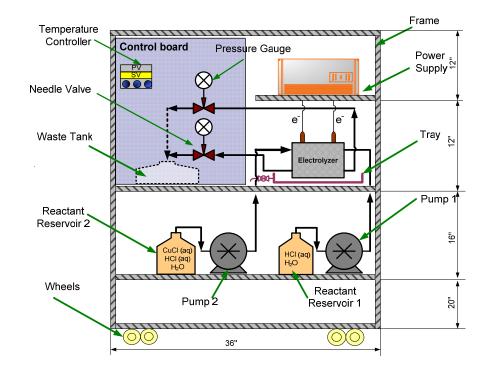
Results of H2A analysis: Estimated H₂ production costs and efficiencies for solar heat based on current Aspen flowsheet

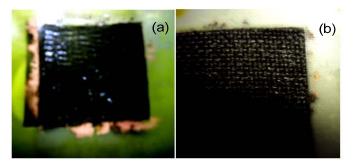
Case	Capital Investment, \$M, Solar/Chemical	Cell EMF, V	Electrical Cost, \$/kw	\$/kg	Sensitivity	Efficiency, % (LHV)
Solar 2015	208.3/136	0.7	0.068	4.53	3.78-5.31	39
Solar 2025	168.5/106.6	0.63	0.048	3.48	2.91-4.11	41


Efficiency = <u>Mol. of H₂ Produced * LHV</u> (Pinch Heat + Electrochemical work + Shaft work)

Assumes electrolyzer and crystallizer operability meets specified targets

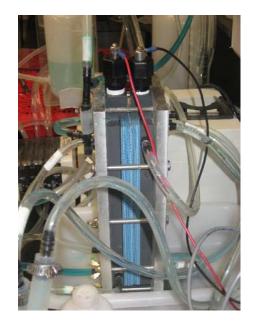
Technical Accomplishment in NERI-C Program—Advanced Electrochemical Technologies Develop membrane for electrolyzer to stop Cu crossover Penn State (S. Lvov-PI)


- Challenge: AECL's test results show that Cu crossover from the cathode to the anode causes an increase in cell voltage
- Solutions:
 - Pennsylvania State University is developing new chlorine conductive materials, poly(ethylene-co-hexenylamine) (PEHA) random copolymers
 - High chlorine conductivity
 - Good chlorine exchange membrane stability (chemical, thermal, and waterswelling).
 - Testing in electrolyzer to start shortly
 - Cation exchange membranes are being investigated in Canada



Technical Accomplishment in NERI-C Program—Advanced Electrochemical Technologies Membrane development work at Penn State (S. Lvov-PI)

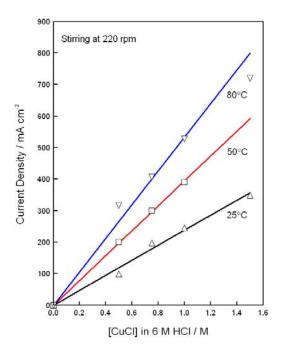
- Build and test electrolyzer and test commercial membranes as well as the promising new membranes
 - AHA, ACM, AMI, AMX, ACS, AM-3, and AHT tested in the Cu-Cl electrolyzer
 - No Cu crossover with AHT
 - The AHT system showed a significantly higher current efficiency in comparison with other systems.


•ACM (a) is more susceptible than AHA (b)

Technical Accomplishment in NERI-C Program—Advanced Electrochemical Technologies

Develop and evaluate different separation methods for processing spent anolyte and catholyte

- Electrodialysis (requires 20-30 kWh/ton water for high salt solutions vs. 620 kWh/ton for distillation)
 - USC developed an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions
 - [CuCl₂] in the diluate was reduced from 1.26% to 0.15% while the [CuCl₂] in the concentrated solution reached 23.13%
- Membrane distillation (uses waste heat)
- Evaporative crystallization
 - Solubilities needed for complicated system
 - Literature search completed; additional data needed



Electrodialysis unit at USC from Tom Davis

Expertise/contributions from INERI partner

- Atomic Energy of Canada Ltd. is developing the electrolyzer
 - Showed that higher temperatures and stirring increased current density at 0.8V cell potential
- AECL provided seed money to several Canadian universities who obtained \$5M grant from Ontario Research Foundation
 - Build small pilot plant
 - Identify and test possible materials of construction
 - Measure thermodynamics properties of important species in the CuCl-CuCl₂-HCl-H₂O system

Summary

- Spray reactor provides necessary heat and mass transfer and product powders are free flowing
- Maximum process temperature of 550C confirmed with Cu₂OCl₂ powders produced with ultrasonic nozzle
- Based on current Aspen model and conceptual design, it should be possible to meet hydrogen production cost target for 2025
 - Assumptions on operability of crystallizer and electrolyzer to be proven
 - Commercially practiced operations incorporated to reduce development costs
- AECL has promising results for the electrolyzer's operation but further improvement is needed
- NERI-C partners are focused on advanced electrochemical technologies, e.g. membrane development, electrolyzer model development, etc

Future work

- Continue with model optimization and updates of efficiency and H₂ production costs
- Identify a membrane for the electrolysis cell that prevents Cu crossover
- Develop quantitative models for hydrolysis and electrolysis reactions
 - Measure solubility of CuCl-CuCl₂ solubility in aqueous HCl solutions as a function of temperature, pH and concentrations of copper species
- Demonstrate the separation methods for handling the spent anolyte
 - Consider different methods, e.g., membrane distillation, electrodialysis, and evaporative crystallization

Acknowledgements

- Many people have contributed to the work and ideas presented here
- Students and staff at the University of Illinois at Chicago, University of Ontario Institute of Technology and other Canadian universities, the NERI-C universities (Penn State and University of S. Carolina, Tulane), Atomic Energy of Canada Limited
- ANL: Magali Ferrandon and Manuela Serban
- Consultants: Dave Tatterson and Alan Zdunek
- DOE staff at NE and EERE for their financial support and encouragement

