Hybrid Sulfur Thermochemical Cycle

William A. Summers Savannah River National Laboratory May 19, 2009

DOE Hydrogen Program 2009 Annual Merit Review **Project PD_13_Summers**

This presentation does not contain any proprietary, confidential or otherwise restricted information

SRNS-STI-2009-00223

Overview

Timeline

Start Date: June, 2004 End Date: Sept, 2009 80% Complete

Budget

Total Project Funding

- DOE Share = \$5.2 M
- Industry Cost Share = \$140 K

FY08 Funding = \$1052 K

FY09 Funding = \$1325 K

Barriers

- H. Electrolysis System Efficiency
- U. High-temperature thermochemical technology
- V. High-temperature robust materials

Partners

Westinghouse Electric, PBMR, Shaw, Technology Insights Giner Electrochemical (subcontract) Univ. of South Carolina (U-NERI) Sandia National Laboratory DuPont, Vanderbilt, CWRU, Clemson <u>Goal</u>: Develop Hybrid Sulfur thermochemical cycle as a viable option for large-scale hydrogen production using nuclear energy

Relevance:

 Permits large-scale centralized hydrogen production from water with no greenhouse gas or other harmful emissions

 Development of HyS Cycle can also be applied to hydrogen production from central solar receiver system

• Creates opportunity for transition by developing new non-fossil hydrogen option for large-scale industrial users

Overcoming Barriers:

- Key Step in HyS Cycle is electrochemical water-splitting based on use of an SO₂ depolarized electrolyzer (SDE)
- FY09 Objectives are focused on improving performance and operating lifetime of SDE using a PEM-type cell
- High temperature portions of HyS Cycle are common with Sulfur lodine Cycle and are being developed in parallel with this project
- System design and economics have been performed in conjunction with industry to ensure relevance and to establish realistic performance and cost goals

Project Approach

- Select electrolyzer design approach meeting goals and performance targets (<u>PEM-type cell</u> selected)
- Conduct <u>Component Development</u> tasks to identify membrane, electrocatalysts and other key cell features, including materials and operating conditions. Verify in button-cell tests.
- Build and operate single cell test facilities at prototypical T&P
- Conduct proof-of-concept tests leading to lifetime tests on single cell electrolyzer of approximately 60-cm² active area
- Scale-up to multi-cell stacks and larger cell sizes
- Work with partners on <u>alternative approaches</u>

FY09 Research Plan - Approach

Component Development

- Establish key partnerships with PEM developers to leverage other work
- Use button-cell and specialized equipment to investigate improved membranes that reduce cell voltage and minimize sulfur crossover
- Continue investigation of electrocatalysts

Single Cell Testing

- Build and test alternative single cell electrolyzers (60-cm²)
- Develop operating methods to prevent sulfur crossover
- Automate test facility and run long-term tests

Alternative Cell Approaches

 Work with industry and university partners on alternative cell design, including a Gap Cell and an anhydrous SO₂ cell

Approach - Milestones

FY08 – Third and Fourth Quarter

- Complete multi-cell stack testing (Level 1)
 Complete (3/31/08)
 - Complete mid-year evaluation for membranes and electrocatalysts (5/15/08)
 - Issue final membrane characterization report (9/1/08)
 - Complete Phase II single cell SDE testing and issue report (9/15/08)
 - Issue Gap-cell report (9/15/08)

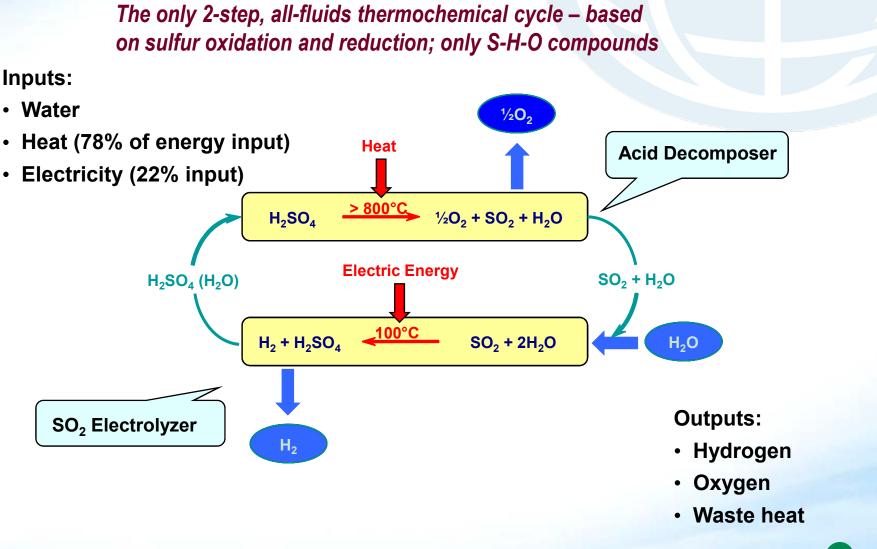
All FY08 Milestones were met on time or ahead of schedule

Complete

Complete

Complete

Complete

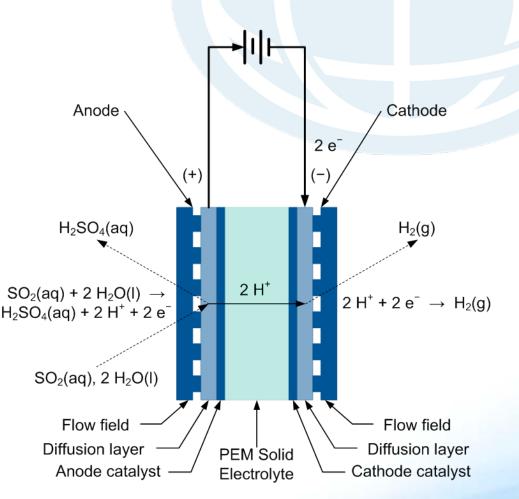

Approach - FY09 Milestones

FY09 Milestones

- Conduct SDE Technical Workshop (5/15/09)
- <u>Level 1</u>: Demonstrate SDE operation without sulfur buildup limitations (6/30/09)
- Complete Gap Cell Assessment (8/30/09)
- Complete 200 hour Single Cell test (9/15/09)
- Complete Button-cell Testing and Issue Component Development Report (9/15/09)

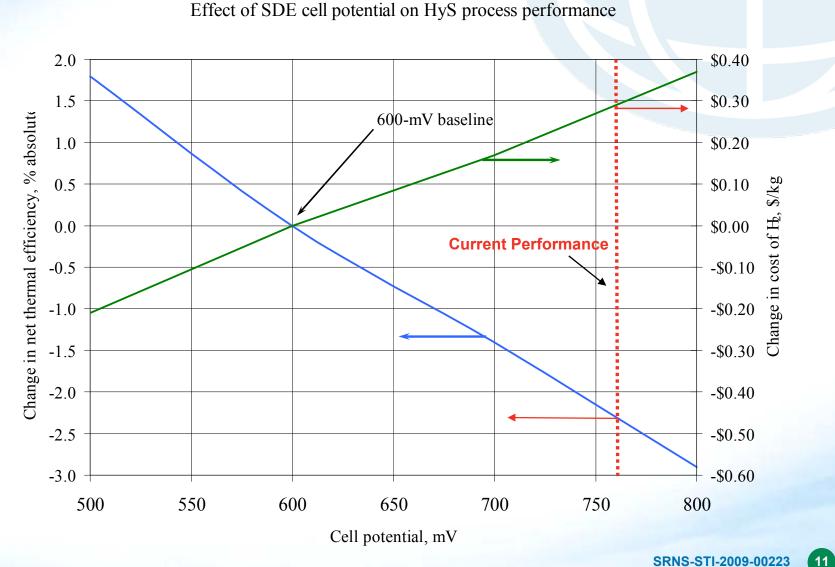
On Schedule
On Schedule
On Schedule
On Schedule
On Schedule

Hybrid Sulfur Process

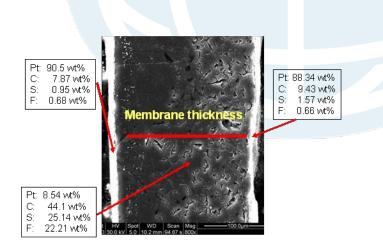


SRNL PEM Electrolyzer Concept

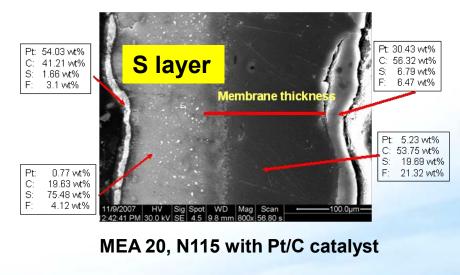
 SO₂ oxidized at anode to form H₂SO₄ and hydrogen ions


 Reversible cell potential reduced by 87% compared to water electrolysis (0.158V vs. 1.229V)

- PEM cell permits compact design, reduced footprint, and lower cost
- Target cell potentials of 600 mV @ 500 mA/cm² established
- Current HyS flowsheet based on operation at 100-120°C and 20-25 bar with 50 wt% H₂SO₄



Improved cell voltage reduces plant efficiency and hydrogen costs, but it is not the major driver



Reduction of Sulfur Deposition is a Key Technical Objective

- SO₂ can diffuse thru PEM from anode to cathode
- Reduction at cathode can result in S deposits and physical damage to cell
- Certain designs and operating conditions avoid deposits
- Multiple approaches
 - Modify membrane
 - Modify operating conditions
 - Alternative cell designs

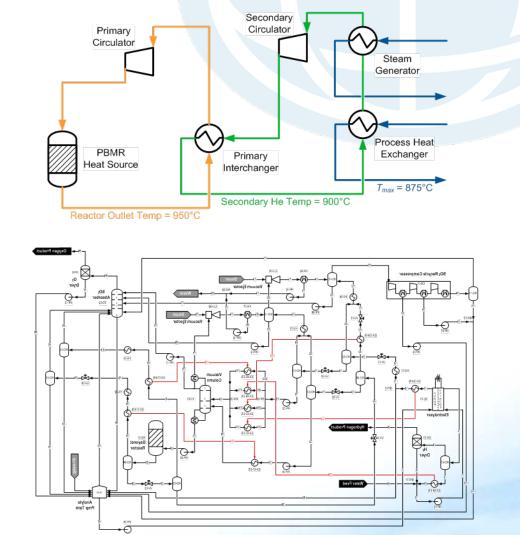
MEA 9, N117 with Pt black catalyst

Technical Accomplishments - Summary

- Completed major design study with industry
- Completed multi-cell stack test (Level 1 milestone)
- Tested ionic conductivity, SO₂ diffusion and chemical stability of over 15 membrane candidates
- Completed testing of six additional (32 total) single cell electrolyzers: <u>Developed new operating method</u> to prevent sulfur crossover in cell
- Upgraded test facility for unattended operation
- Developed gap cell with testing in progress

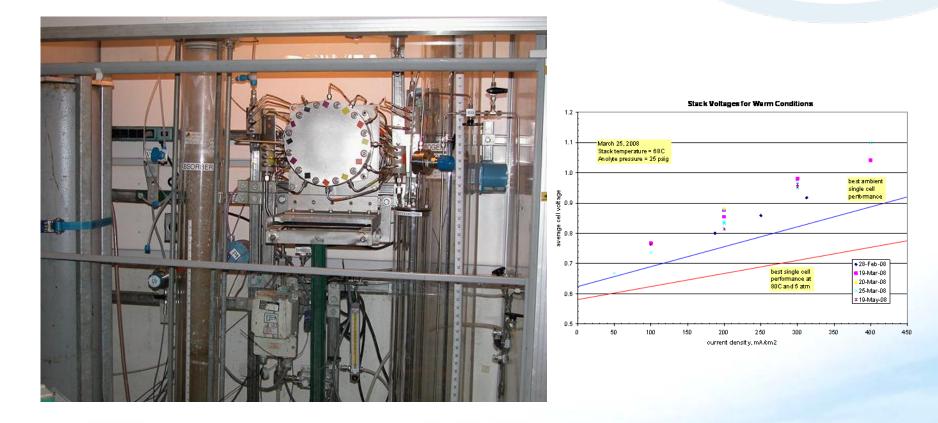
Nuclear hydrogen plant design, detailed HyS flowsheet and cost estimate completed with industry partners (Westinghouse, PBMR, Shaw)

Key design improvements:


Optimized heat integration between reactor, hydrogen plant and bottoming cycle

Improved thermal efficiency for HyS thru pinch analysis

Increased hydrogen production per PBMR by over 150%


Overall process efficiency = 37% (over 40% more H2 than conventional reactor+elect.)

Capital costs and cost of hydrogen estimated w/H2A; Baseline = \$5.34/kg with range of \$4.15 - \$7.10/kg

Multi-Cell Stack Testing Completed

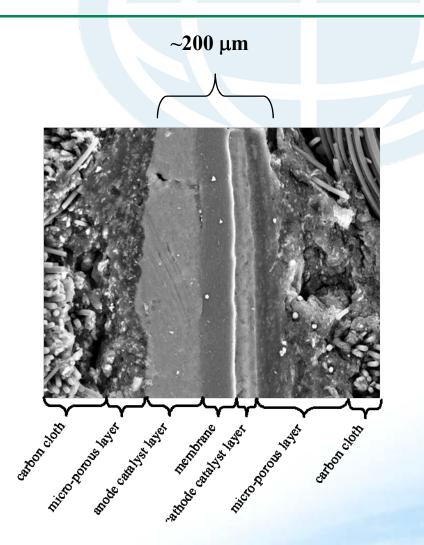
- Level 1 Milestone Completed on 3/26/08 (ahead of schedule)
- Demonstrated 86 lph H2 (8x scale-up) and multi-cell stack capability
- Key step leading to larger scale demonstration plant

Electrolyzer Component Development Objectives

Proton Exchange Membrane

- Minimal SO₂ Transport
- Maximum ion conductivity

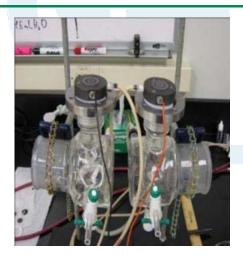
Anode

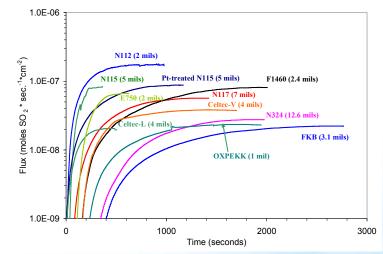

- Maximum SO₂ oxidation kinetics
- Minimal attack by SO₂/H₂SO₄

Cathode

- Maximum hydrogen formation kinetics
- Minimal reaction with SO₂

Flow Field/Diffusion Media

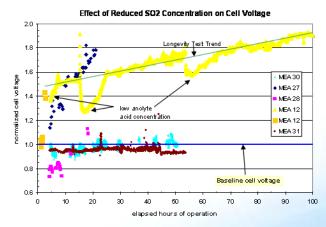

- Maximize SO₂ transport to anode
- Low pressure drop
- Chemically and mechanically stable


Improved performance obtained with new membranes

- Tested over 15 different PEMs
- All membranes exhibit reasonable ionic conductivities in 30 wt% H₂SO₄
- Established SO₂ mass transport for baseline PFSA membrane (Nafion[®]115)
- Pt-treated Nafion[®], modified Nafion[®], PBI, SDAPP, S-FPCB and PFSI membranes exhibit reduced SO₂ transport and good chemical stability in H₂SO₄
- PEEK and SPEEK membranes exhibit reduced SO₂ transport but poor chemical stability in H₂SO₄

Key Findings: Advanced membranes can improve conductivity/SO₂ transport ratio by >8 times. Higher temperature operation (>100 C) can reduce cell voltage.

Button-cell Electrolyzer


SO2 transport thru Experimental Membranes

Single-cell Testing without Sulfur Build-up

- Developed new method of operating cell in SO₂-limited condition to prevent S crossover
- Completed 50 hour test run with no indication of sulfur
- Other qualitative measures also indicated reduced sulfur at cathode
- Test facility being modified for unattended operation to permit long-term testing
- Expect further improvements with advanced membranes and higher temperature operation
- Major step in development of SO₂depolarized electrolyzer

Single Cell Electrolyzer (60 cm² active area)

SO₂-limited Cell Operation

Collaborations

Giner Electrochemical

 Industry subcontractor; multi-cell stack fabrication; gap cell development; button-cell test facility fabrication

Membrane developers

 Sandia National Lab, Clemson Univ., Vanderbilt, CWRU, Penn State, Univ. of So. Carolina, BASF, Giner, DuPont

• Commercial nuclear plant developers

• Westinghouse Electric, Pebble Bed Modular Reactor (RSA), Shaw Stone and Webster. Earlier work: General Atomics, AREVA

Related work on solar-heated HyS Cycle

Sandia National Laboratory, General Atomics

Future Work

FY09

- Perform extended operating tests (200-500 hours) on single cell electrolyzer to verify sulfur-free operation (Note: This is a DOE-NE Level 1 milestone)
- Continue membrane testing and select membranes for future testing in single cell electrolyzer
- Construct and operate a pressurized button-cell test facility permitting high temperature operation
- Continue work with industry, lab and university partners on membranes and alternative cell design approaches

FY10:

- Ongoing work will depend on DOE-NE down-select and the future of Nuclear Hydrogen Initiative program
- If funded, next key step is design and construction of an Integrated Lab-Scale Experiment of HyS, including high temperature acid decomposition and SO₂/O₂ separation

Summary

Relevance HyS combined with advanced nuclear reactors (or solar receivers) can be an important source of hydrogen for industry and the transportation sector

Approach Establish system goals with industry partners. Leverage ongoing PEM fuel cell work and collaborate with membrane developers. Maintain strong component development efforts while advancing testing of larger cells and stacks

Technical Accomplishments Multi-cell stack demonstrated; high efficiency HyS commercial flowsheet completed; new membranes identified; test facility modified for unattended operation; successful method developed for sulfur-free operation

Collaborations Active partnership with commercial nuclear team on plant design; partnership with Giner on electrolyzer manufacture; collaborations with industry and university partners on membranes

Future Work Verify sulfur-free operation with extended testing; demonstrate complete cycle in an integrated lab-scale experiment