

Fermentative and Electrohydrogenic Approaches to Hydrogen Production

Pin-Ching Maness National Renewable Energy Laboratory

Bruce Logan Penn State University (Subcontract)

May 20, 2009 Project ID #: PD_18_Maness

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Overview

Timeline

Project start date: FY05 Project not funded in FY06 Project end date: 2013 Percent complete: N/A

Barriers

Production barriers addressed

- H₂ molar yield (AR)
- Waste acid accumulation (AS)
- Feedstock cost (AT)

Budget

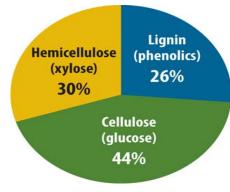
Funding received in FY08: \$680K

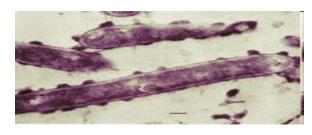
Funding allocated for FY09: \$400K

Partners

Dr. Bruce Logan, Penn State University Drs. David Levin and Richard Sparling, University of Manitoba, Canada

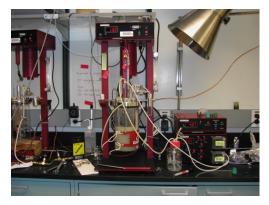
Objectives/Relevance


- Objective: Develop direct fermentation technologies to convert renewable, lignocellulosic biomass resources to H₂.
- Relevance: Address directly feedstock cost and H₂ molar yield to make the process cost competitive.
- Make positive impact on technical barriers and targets.


Characteristics	Units	2013 Target	2009 Status
Yield of H ₂ from glucose	Mole H ₂ /mol glucose	4	8.52
Feedstock cost	Cents/lb glucose	10	12

Objectives/Approach/Milestone Task 1: Bioreactor Performance

- Objective: Address feedstock cost and optimize the performance of scaled-up bioreactors for H₂ fermentation.
- Approach: Use corn-stover lignocellulose and cellulosedegrading bacteria to address feedstock cost.

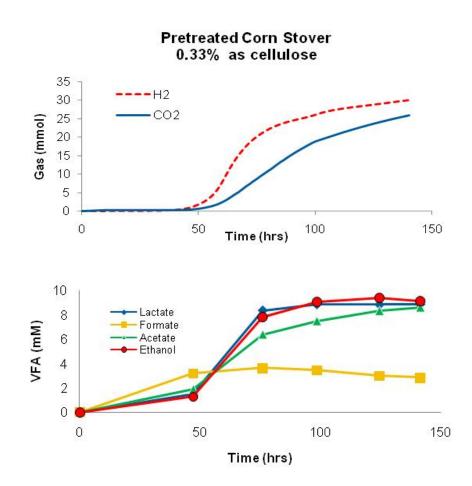

Lignocellulosic Biomass

Clostridium thermocellum

Bioreactor Performance

	Milestone	Completion Date	Status
3.2.3	Determine H ₂ molar yield and mass balance using pretreated biomass	8/08	Completed

Task 1 – Technical Accomplishment Investigated Fermentation of Various Substrates

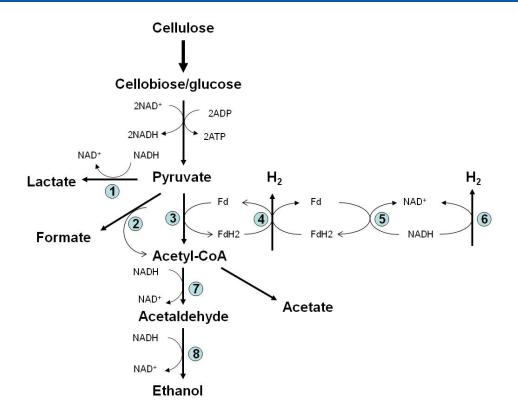

- H₂ production rates and molar yields varied based on nature of the substrate and level of carbon loading.
 - Less recalcitrant substrates gives rise to faster rate
 - Higher carbon loading leads to higher rate of H₂ production
 - Lower carbon loading leads to higher H_2 molar yield.

Substrate (%, w/v)	Hexose, mM	Temp (°C)	L H ₂ /L/Day	H ₂ Molar Yield
Cellobiose (0.25%)	14.6 mM	55	2.94	1.1
Cellobiose (0.25%)	14.6 mM	50	1.65	1.64
Avicel (0.5%)	30.9 mM	50	1.44	1.51
Corn stover* (0.25%)	9.1 mM	50	0.25	1.67
Corn stover* (0.56%)	20.4 mM	55	0.55	1.33
Corn stover* (0.83%)	30.9 mM	55	1.21	Not determined

* Dilute acid (1.08% H₂SO₄) pretreated corn stover lignocellulose (59% cellulose; 25% lignin)

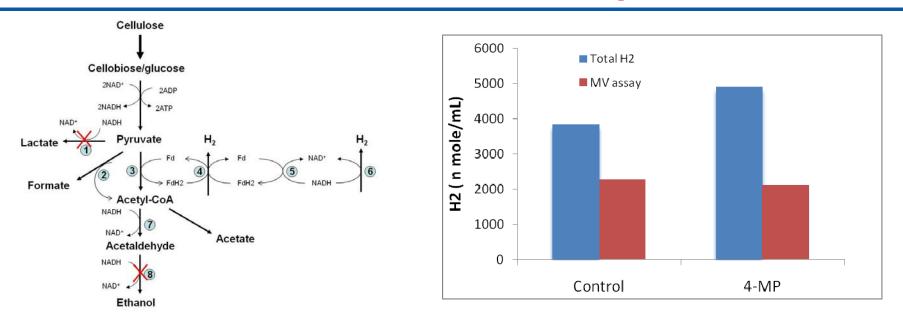
Task 1 – Technical Accomplishment Optimized Lignocellulose Fermentation

 Lignocellulose (0.56%, 20.4 mM glucose) was added in bioreactor with controls in pH (7.0), temperature (55°C), and pressure.



- H₂ molar yield: 1.33 mol H₂ mol⁻¹ hexose
- Rate of H₂ production: 0.55 L H₂ L⁻¹ D⁻¹
- Carbon mass balance 74.5%
 - CO₂: 23.62 mM
 - Succinic acid: 0.32 mM
 - Formic acid: 2.80 mM
 - Acetic acid: 7.13 mM
 - Lactic acid: 9.15 mM
 - Ethanol: 14.10 mM
- Carbon mass balance with cellobiose: 86%

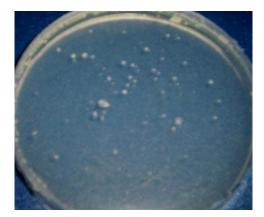
Completed milestone "*Determining* H₂ molar yield and carbon mass balance using pretreated biomass" (8/08).


Objectives/Approach/Milestone Task 2 – Develop Genetic Methods for Metabolic Engineering

- Objective: Improve H₂ molar yield (mol H₂/mol hexose).
- Approach: Redirect metabolic pathways to maximize H₂ production via the development of genetic methods.

	Milestone	Completion Date	Status
3.2.2	Test effect of metabolic pathway inhibitors on H ₂ production	6/08	Completed
3.2.5	Develop genetic tools and optimize screening methods for genetic engineering	3/09	Completed

Task 2 – Technical Accomplishment Effects of Metabolic Pathway Inhibitor

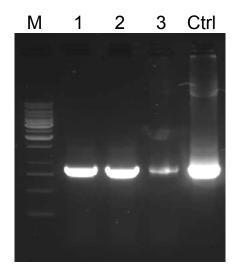

- Findings of the metabolic pathway inhibitors will guide development of the most effective genetic engineering strategies.
- Blocking the ethanol pathway and lactic acid pathway by 4-methyl pyrozole improved H₂ yield by 28%.
- Blocking acetaldehyde (#7) or formate (#2) formation increased H₂ output by 81% and 58%, respectively (2008 AMR). In conclusion, blocking pathway #7 is the most effective strategy to improve H₂ production.

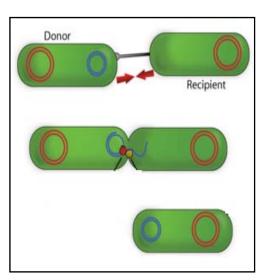
Completed milestone "Test effect of pathway inhibitors on H_2 production" (6/08).

Task 2 – Technical Accomplishment Develop Genetic Methods

- Clostridium thermocellum grew poorly on solid agar plate — a challenge for genetic engineering.
- We improved growth of *C. thermocellum* on solid agar plates by more than 100-fold to enable mutant selections.

Agar (%)	Number of colonies
1.5%	3–8
1.2%	10–20
1%	25–40
0.8%	>1000
0.7%	>1000


> 60 colonies



Task 2 – Technical Accomplishment Developing Tools for Genetic Transformation

 Conjugation technique was successful in *Clostridium* acetobutylicum and *C. cellulolyticum*, thus improving chance of success.

M: Marker 1,2,3: Kan^r gene Ctrl: Positive control

plKM1 confirmation in *E. coli* S17-1

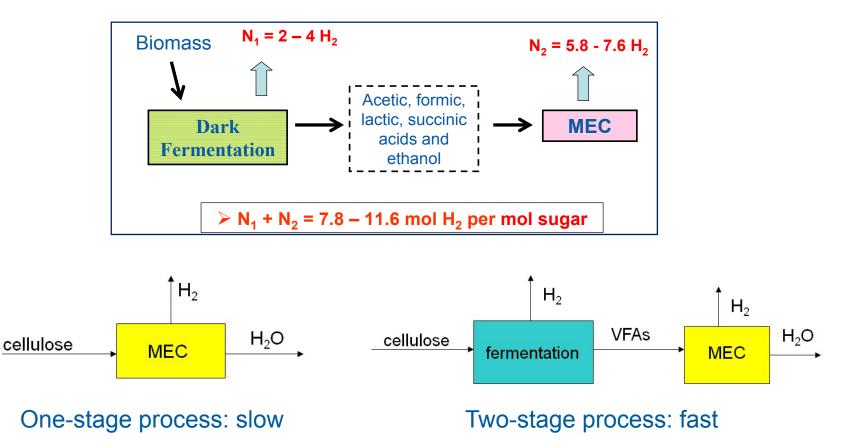
• Developed a colony formation protocol for *C. thermocellum* 27405 (July 2008).

• Obtained plasmid pIKM1 from Dr. Wiegel (University of Georgia) and helper plasmid RP4 from Dr. Wolk (Michigan State University) (Sept 2008).

• Transferred the pIMK1 plasmid into an *E. coli* host and confirmed by PCR and restriction digestion (Oct 2008).

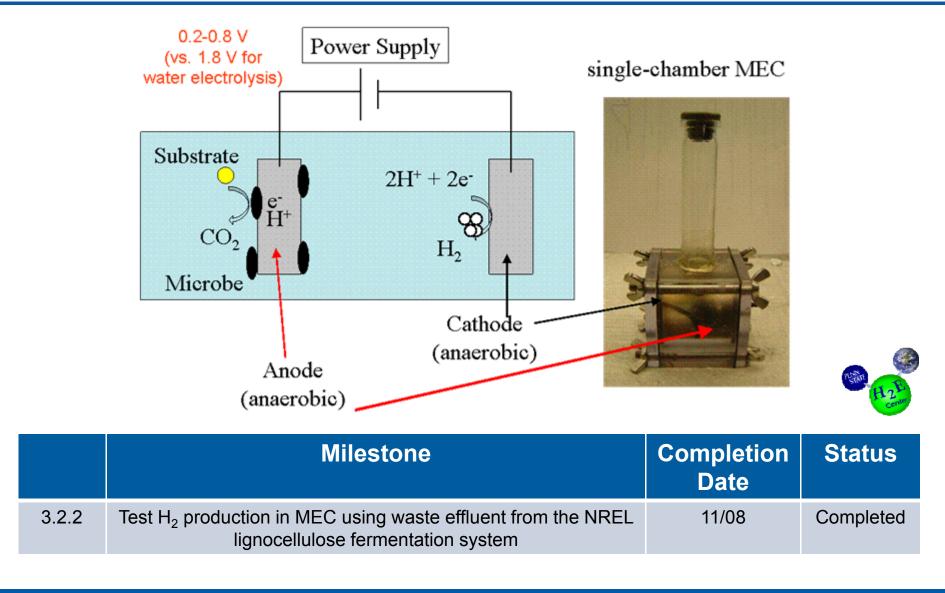
• Gene transfer to *C. thermocellum* via conjugation was not successful (Dec 2008).

• Obtained *E. coli* strain S17-1 with a chromosomally integrated helper plasmid and confirmed plasmid pIKM1 in *E. coli* (Mar 2009).


• Conjugation with *C. thermocellum* is under way (In progress).

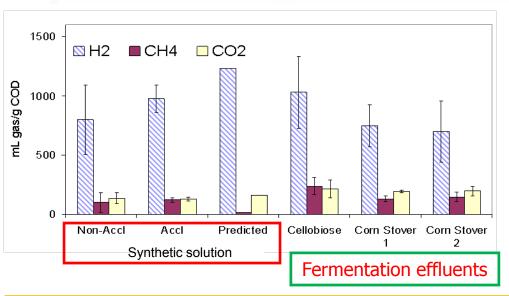
Completed milestone "*Develop genetic tools and optimize screening methods for genetic engineering*" (3/09).

Objectives/Relevance


Task 3 – Electrochemically Assisted Microbial Fermentation

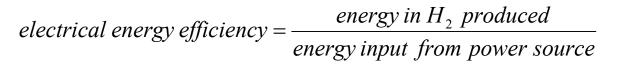
 Objective: Improve H₂ molar yield (mol H₂/mol hexose) by integrating dark fermentation with Microbial Electrolysis Cell (MEC) reactor to convert waste organic matter to additional H₂.

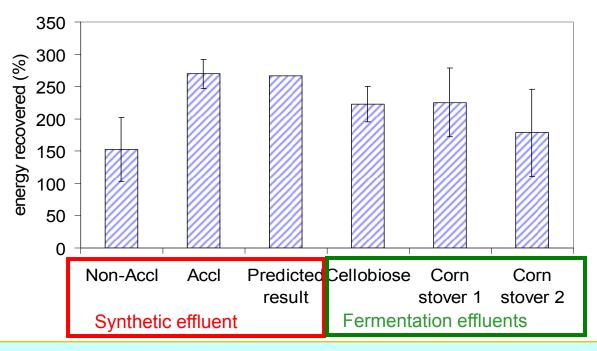
Approach/Milestone


Subtask 3: Electrochemically Assisted Microbial Fermentation

Task 3 – Technical Accomplishments Gas Production Using Real Fermentation Effluent

-		Gas composition (%)		
Fermentation effluent	Total gas production (mL)	H ₂	CH ₄	CO ₂
Synthetic (Accl)	110 ± 10	79±3	10 ± 2	11 ± 1
Cellobiose	105 ± 17	69 ± 4	16 ± 4	14 ± 1
Corn stover 1	97 ± 16	69 ± 6	12 ± 3	19 ± 3
2	90 ± 29	66 ± 8	15 ± 5	19 ± 3


- Acclimated better than non-acclimated
- Acclimated less than predicted
- Cellobiose effluent performed better
- Some methane production in all tests.


 $predicted = 54\% \times acetate + 29\% \times ethanol + 12\% \times succinate + 4\% \times lactate + 1\% \times formate$

Task 3 – Technical Accomplishments

Electrical Energy Efficiency

- Acclimated 1.2 × greater than non-acclimated.
- Acclimated result achieved that predicted based on single substrates.
- Actual fermentation effluents ~200% efficiency.

Task 3 – Technical Accomplishments Novel Integrated System Improved H₂ Molar Yield

- Fermentation: 1.64 mol H₂/mol hexose
 - Fermentation is fast and easily scalable, using recalcitrant cellulosic substrates.
- MEC: 6.88 mol/mol (based on actual cellobiose effluent)
 - First demonstration of H_2 from fermentation effluent via MEC.
- Combined Yield: 9.95 mol H₂/mol hexose
 - The NREL-PSU integrated system exceeds DOE 2013 target of "4 mol H₂/mol hexose."
 - Economic analysis in progress.

Completed milestone "Test H_2 production in a MEC reactor using waste effluents from the NREL lignocellulose fermentation system" (11/08).

Collaborations

• Task 1:

Drs. Ali Mohagheghi, Melvin Tucker, and Nick Nagle, National Bioenergy Center at NREL (Biomass pretreatment and characterization).

• Task 2:

Drs. David Levin and Richard Sparling, University of Manitoba, Canada (Develop genetic tools for pathway engineering). Maness is an international collaborator in a recent grant award from the "*Genome Canada*" Program.

• Task 3:

Dr. Bruce Logan, Penn State University (Microbial electrolysis cells to improve H_2 molar yield).

Future Work

Task 1:

- Investigate effects of corn stover lignocellulose carbon substrate loading on rates and yield of H_2 .
- Optimize H₂ production in bioreactors using lignocellulose from pretreated switch grass.
- Conduct carbon mass balance and redox balance.

Task 2:

- Optimize conjugation protocols using a single *E. coli* strain containing both the helper plasmid along with the pIMK1 plasmid carrying the cargo genes.
- Develop electroporation protocols for *C. thermocellum*.

Task 3:

- Conduct continuous-flow MEC feeding NREL cellobiose fermentation effluent.
- Determine effects of temperature (lower temperatures to reduce methane production.
- Perform microbial community analysis.

Summary

Task 1:

- *Clostridium thermocellum* can produce H₂ from recalcitrant, abundant biomass sources such as pretreated corn stover and switch grass.
- Hydrogen molar yield and mass balance determined with various substrates.
- Raising temperature from 50 to 55° C improved H₂ production by 79%.

Task 2:

- Blocking waste-byproduct formation improved total H₂ output by 28%, which can guide the most effective pathway engineering effort.
- Obtained tools and developed protocols to initiate gene transformation.

Task 3:

- Developed an acclimated consortium tailored for mixed waste for H₂ production.
- Produced H₂ using both cellobiose and lignocellulose fermentation effluents, with a near 200% electrical energy efficiency.

H₂ molar yield of 9.95 achieved with the novel integrated system, exceeding 2013 DOE Technical Target.