

High-Capacity, High Pressure Electrolysis System with Renewable Power Sources

Transportation

Martin Shimko, Avalence LLC, DOE Merit Review, May 19, 2009

Electrolyzer

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ELECTROLYZER DEVELOPMENT PROGRAM

Timeline

Start Date: May 2008 End Date: Sept 2011 Percent Complete: 15%

Budget

Project Funds: \$2.41M DOE: \$1.93M Contractor: \$0.48M

FY 08 Funds: \$650K Allocated FY 09 Funds: \$230K Allocated

Barriers Addressed

Capital Cost System Efficiency Renewable Power Integration

Partners

Avalence:LeadHyperComp:Composite WrappingHydrogen Energy Center:

MaineOxy:

Installation Funding Revenue Operation

ELECTROLYZER DEVELOPMENT PROJECT GOALS

- Achieving at Least a 15 X Increase in the Gas Production Rate of a Single High Pressure Production Cell
- Demonstrate the High Pressure Cell Composite Wrap Which Enables Significant Weight Reduction
- Build and Test a 1/10th Scale Pilot Plant
- Perform Economic Assessment for Full Scale Plant (300 kg/day, 750 kW) That Meets DOE 2017 Cost Target of \$3.00/gge

ELECTROLYZER DEVELOPMENT PROGRAM

Project Technical Objectives

Determine a Manifolding and Sealing Arrangement for Nested Cell that Satisfies Need for H₂ and O₂ Gas Separation, Electrical Connection to Electrodes, and Electrolyte Replenishment

Determine Containment Penetration Size and Design that is Compatible with Composite Wrapped Vessel Constraints, Cell Electrode Current Transfer and Flow Requirements For Gas Off-Take and Electrolyte Replenishment

Design a Functional Shape of Outer Metal Jacket For Dual Purpose:

1) Outer Electrode's Inner Surface

2) Vessel Liner that is the Foundation for Composite Wrap

Demonstrate the Performance of the High Output Cell Core so that Accurate Projections of Energy Use can Be Integrated into the Cost Model

Demonstrate the Ability to Implement a Composite Fiber Outer Wrap Over the High Output Cell Core

Produce a Pilot Plant Design For Use as a Basis for a Sound Economic Analysis of Plant Fabrication and Operating Cost

Demonstrate the Operation and Efficiency of the Pilot Plant

- 1) Laboratory Testing at Avalence
- 2) Field Testing at NREL

Have a Site Ready to Accept the Completed Plant for Commercial Operation

- 1) 100 kW of Renewable Power in Place
- 2) Sale or Use of the Plant Products Defined

ELECTROLYZER DEVELOPMENT PROGRAM SCHEDULE

<u> First Year – Tasks 1, 2, 3</u>

Stretched to 24 Months Based on Anticipated Funding Availability

<u>Remaining Tasks 4 – 8</u>

18 Month Schedule Dependant on Funding Availability

PROJECT TIME LINE				Calendar Year Quarter										
	Q2 08	Q3 08	Q4 08	Q1 09	Q2 09	Q3 09	Q4 09	Q1 10	Q2 10	Q3 10	Q4 10	Q1 11	Q2 11	Q3 11
Preliminary Design														
Preliminary Nested Cell Demonstration (1,000 psi)														
Wrapped Cell Demonstration (2,500 psi)														
Go/No Go Decision Gate								Δ						
Final Cell Design														
Pilot Plant Design (40 kg/day)														
Pilot Plant Fabrication														
Pilot Plant Laboratory Testing														
Pilot Plant Testing at NREL														

ELECTROLYZER DEVELOPMENT PROJECT MILESTONES

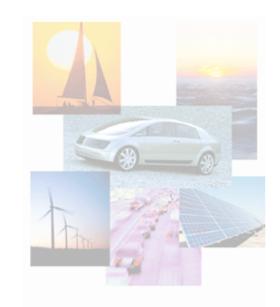
Original Project Milestones	The 13 Miles
Milestone Description	Revised Original Proposed Completed End of
Preliminary Test Cell Fabricated	Month 15
Preliminary Test Cell Testing Complete (1000 psi)	Month 17
Cell Internal Design Frozen	Month 18
Carbon Wrapped Cell Delivered	Month 19
Single Cell Testing Complete (2,500 psi)	Month 22
Efficiency, Manufacturability, and Economics Updated	Month 22
Go/No Go Review (Technology and Economics)	Month 22
Pilot Plant Design Complete	Month 26
Pilot Plant Fabrication Complete	Month 32
Pilot Plant Shakedown Testing Complete	Month 34
Pilot Plant Performance Testing Complete	Month 37
NREL Performance Testing Complete	Month 40

Design Approach For High-Capacity, High-Pressure Production Cell

- Maintain Cylindrical Pressure Boundary Configuration
- Increase the Diameter By Using a Composite Outer Wrap
- Place Multiple Electrode and Membrane Pairings Inside a Single Cell Body
- Electrodes Act as Two Sided Unipolar Electrodes

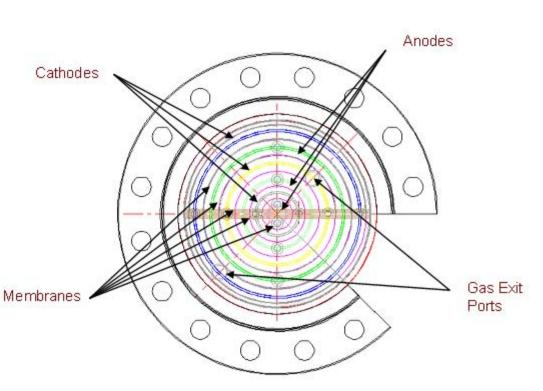
Project Design Challenges

- Large Diameter Membrane Formation
- Membrane to Manifold Sealing
- Fluid and Power Penetrations
- Composite Wrapping "Heavy" Cylinder
- Process Control of a Multiple, High-Capacity Cell Array

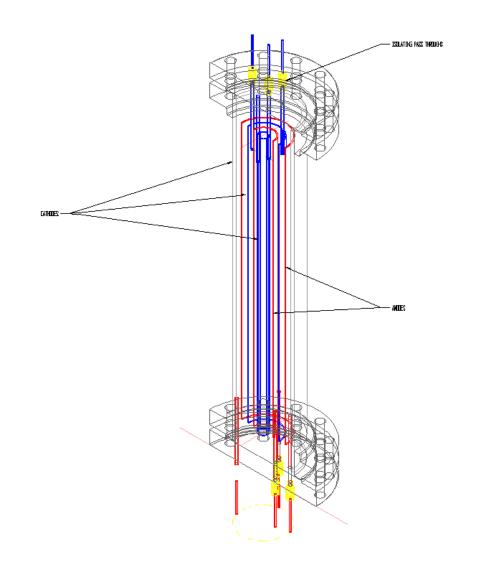


Project Accomplishments To Date

- Identified and Tested Formable Sheet Membrane Material
- Successfully Demonstrated Membrane Tube Forming and Seam Joining
- Completed Design of Single Cell Test Article and Test Apparatus
- Completed Preliminary Design of Composite Wrap Cell
- Began Fabrication of Test Cell and Apparatus



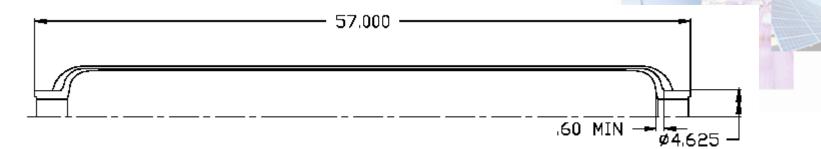
Single Cell Rendering


Initial 1000 psi Test Cell

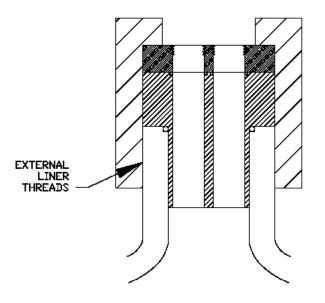
 Standard Flange and Steel Tube
 Containment
 "Same" Core
 Configuration as
 Composite
 Wrapped Cell

Initial 1000 psi Test Cell

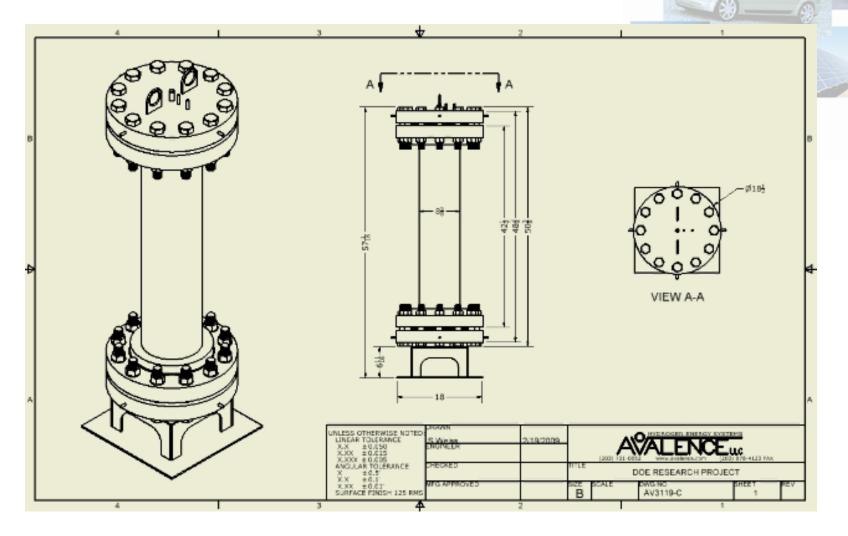
Also Possible Composite Wrapped Configuration


Composite Wrapped Cell

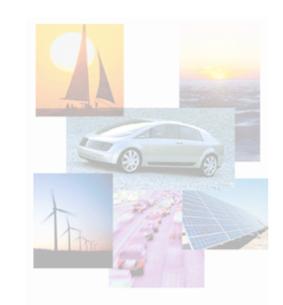
Another Possible Composite Wrap Configuration


Inlet Ports Held to 3 inch ID Top – 2 Gas Exit Ports, "Clamped" Cathode Connection Bottom – Anode Connection, Water Inlet

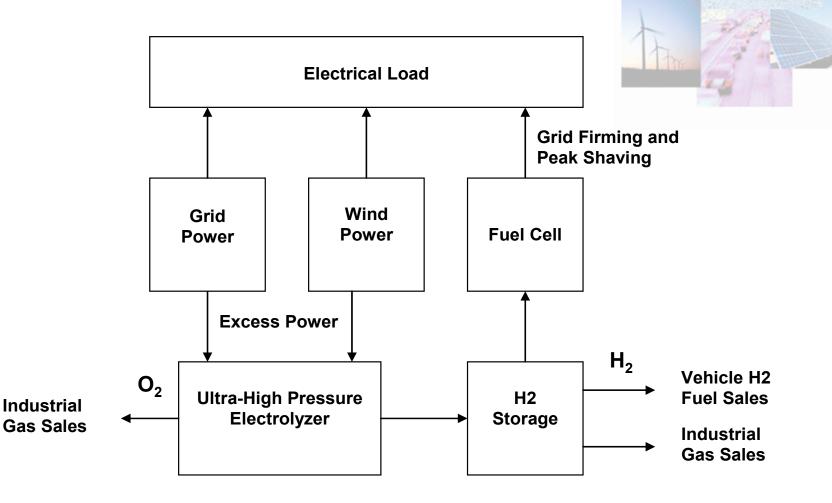
HEI Composite Shell Design



Need to settle on Design Pressure (2500 psi vs 6500 psi) before progressing further on the composite shell

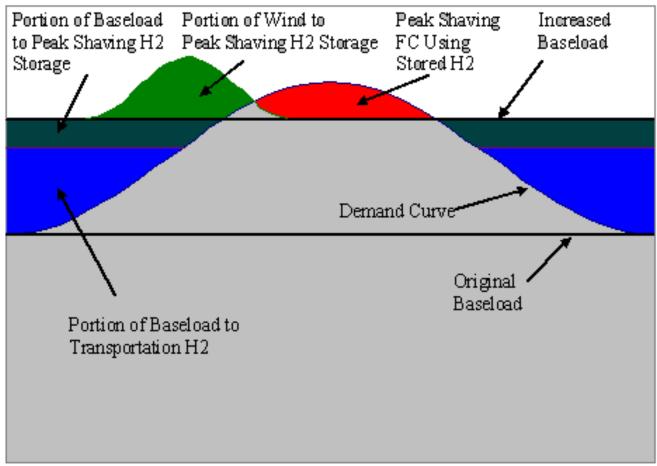


Single Cell Engineering Drawing



Test Cell Valve Control Panel

The Fully Integrated System Block Diagram


Energy Storage Utilizing Hydrogen

Unique Flexibility to Optimize System

- Allows Independent Sizing of Components to Optimize System Performance and Economics
 - Fuel Cell Sets Power Output from Stored H2
 - Storage Supply H2 for Required Period of Power
 - Electrolyzer Fill H2 Storage in Required Period or Absorb Set Fraction of Available Power
- Both Peak Shaving and Off-Peak Utilization for Baseload Stabilization (Grid Firming)
- Allows H2 Production and Sale for Transportation Fuel
 Maximize the Value of the Power Supplied

Example of Fully Integrated Wind, Base Load Power And Electrolyzer Hydrogen For Peak Shaving, Baseload Firming, And Transportation Fuel Production

Simple Economic Assessment of Large Wind Energy Storage Fully Commercial CapEx and Cost Assumptions

- Electrolyzer: \$480/kW (Meeting DOE Target)
- Fuel Cell: \$200/kW
- H2 Storage:\$200/kg
- > Annual O&M, Refurbishment Reserve:
 - *****3% of System CapEx for H2 System
 - *1% of System CapEx for Wind System
- Wind Power Installed Cost: \$1.50/W
- > Average PPA for Raw Wind: 3.5¢/kWh
- > Average Value of "Peak" Power is 15¢/kWh

Detailed Economics: Baseload Firming 1/3 of the Available Power Converted to H2 1 Full Day Fuel Cell Power Stored

		and the second se
100 MW Installed Wind, 33 MW Electrolyzer, 22,500 kg Storage, 25 MW Fuel Cell	Without H2 System	With H2 System
Annual Electrolyzer, Storage, Fuel Cell System Cost (20 Year Amortization)	-	\$1.3 MM
Annual Wind Turbine Installation Cost (20 Year Amortization)	\$7.5 MM	\$7.5 MM
Annual Operating, Maintenance, Refurbishment	\$1.5 MM	\$2.0 MM
Annual "Junk" Power Yield (35% Capacity Factor)	307 GWh	205 GWh
Annual On-Demand Power Yield (50% Efficiency)	-	51 GWh
Annual Value of "Junk" Power @ 3.5¢/kWh	\$10.7 MM	\$7.2 MM
Annual Value of "Peak" Power @ 15¢/kWh		\$7.6 MM
Annual Profit	\$1.7 MM	\$4.0 MM

Contact Information

<u>CEO</u>:

Deborah Moss

Operations and Marketing

sfn@avalence.com

President:

Martin Shimko

Technology Development, Sales, and IP Protection

mas@avalence.com

1240 Oronoque Road • Milford, Connecticut 06460 • Tel: 203-701-0052 • Fax: 203-878-4123 www.avalence.com -22-