

2009 Hydrogen Program

Annual Merit Review Meeting

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Monjid Hamdan Giner Electrochemical Systems, LLC May 20, 2009

Project ID# pd_21_hamdan

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- **Project Start:** May 2008
- Project End: May 2011
- Percent Complete: 30

Budget

- Total Project Budget: \$2.49M
 - **DOE Share:** \$1.99M
 - □ **Cost Share:** \$0.51M

FY08 Funding

- DOE: \$650K
- Cost Share : \$162K
- FY09 Funding
 - DOE: \$230K

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

Targets

DOE TARGETS: Distributed Water Electrolysis					
Characteristics/units	2006	2012	2017		
Hydrogen Cost (\$/kg-H ₂)	4.80	3.70	<3.00		
Electrolyzer Cap. Cost (\$/kg-H ₂)	1.20	0.70	0.30		
Electrolyzer Efficiency %LHV	62	69	74		
(%HHV)	(73)	(82)	(87)		

Partners

- Parker Hannifin Corporation System Development
- Virginia Tech University Membrane Development

Project Objectives

Overall Project Objectives

- Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis.
 - □ Develop high efficiency, low cost membrane
 - □ Develop long-life cell-separator
 - Develop lower-cost prototype electrolyzer <u>stack</u> & <u>system</u>
 - □ Demonstrate prototype electrolyzer system at NREL

FY08-09 Objectives

- Develop Low-Cost, High-Efficiency, High Strength Membrane
 - Electrochemical performance comparable to thin Nafion[®] (N1135)
 - □ High strength to allow operation at 300 psig and 80-90°C
- Initiate cell-separator development
- Complete preliminary system design and development of lower-cost components

Milestones

FY08 Go/No Go Decision Points (May 09)

Milestones	Progress Notes	% Complete
Membrane: Demonstrate DSM [™] membrane performance comparable to or better than that of Nafion [®] 1135 at 80°C	DSM [™] : Completed 1000 hrs @ 80°C. Testing indicates low membrane degradation rate, high life expectancy Performance DSM [™] > Nafion [®] 1135; ~Nafion [®] 112	100%
Demonstrate electrolyzer lifetime with DSM [™] membrane (80°C ≥ 1000 hrs)	BPSH: Cell Voltage Performance > Nafion®112	100%
Cell-Separator: Demonstrate performance comparable to dual-layer Ti separator	Life testing and H ₂ -embrittlement tests confirm longevity of Carbon/Titanium cell-separators.	100%
System Development: Complete preliminary design review	P&ID Diagram $$ Process Flow Diagram (PFD) $$ Control Diagrams $$ Safety Review $$ System Layout and Packaging CDR	56%

Membrane Development Approach

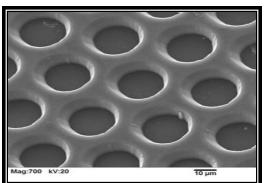
Further develop and combine two approaches under development for PEM fuel cell membranes:

□ DSM[™] high-strength, high-efficiency membranes -GES

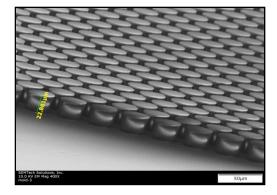
- PFSA ionomer incorporated in an engineering plastic support
- Evaluate 2D and 3D supports

Advanced hydrocarbon membranes- Virginia Tech

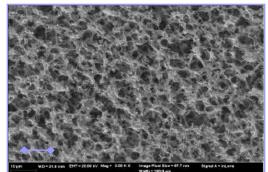
- Bi Phenyl Sulfone, H form (BPSH)
- Random or Block copolymers



DSM™ Membrane


Supported Membrane Approach

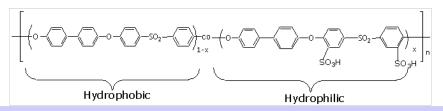
- GES DSM[™] high-strength, highefficiency membranes
 - PFSA ionomer incorporated in an engineering plastic support (2D & 3D)
 - Superior Mechanical Properties
 - No x-y dimensional changes upon wet/dry or freeze-thaw cycling
 - Much stronger resistance to tear propagation
 - Superior to PTFE based supports, 10x stronger base properties
 - Optimize membrane
 - Ionomer EW and thickness
 - Scale-up fabrication methods and techniques


DSM[™] Supports

2D "Laser"

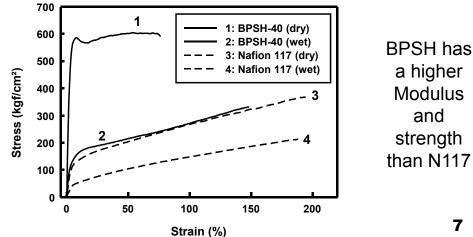
2D "Cast"

3D "Commercial"


Scanning Electron Microscope (SEM) micrograph of the polymer membrane support structures

BPSH Membrane

Advanced Hydrocarbon Membranes Approach


- Virginia Tech Bi Phenyl Sulfone, H form (BPSH)
 - Wholly aromatic
 - Strong acid resistance
 - Inexpensive starting materials
 - Form disulfonate monomer. then random or block copolymerization
 - Determine optimum sulfonation level
 - Trade-off between conductivity and mechanical properties
 - 35 mole% disulfone units provides conductivity comparable to N112
 - Evaluate up to 50 mole% disulfone
 - Consider incorporating BPSH into DSM[™] supports

Acronym: BPSH-xx-Mx Bi Phenyl Sulfone: H Form (BPSH) xx= molar fraction of disulfonic acid unit, e.g., 30, 40, etc. Mx: Acidification method, e.g., M1, etc.

Acidification Treatment

Method 1: 1.5M H₂SO₄, 30°C, 24hrs, then deionized H₂O, 30°C, 24hrs. Method 2: 0.5M H₂SO₄, boil, 2hrs, then boiled deionized H₂O, 2hrs.

High Durability Cell-Separator Approach

Requirements

- \Box Gas-impermeable (separates H₂ and O₂ compartments)
- □ High electrical conductivity and high surface conductivity
- Resistant to hydrogen embrittlement
- □ Stable in oxidizing environment
- Low-Cost

Legacy Design

□ Multi-Layer piece consisting of Zr on hydrogen side and Nb on oxygen side

Single or Dual-Layer Ti separators have been used

- □ Ti subject to hydrogen embrittlement
- □ Lifetime limited to <5000 hours, depending on pressure and operating conditions

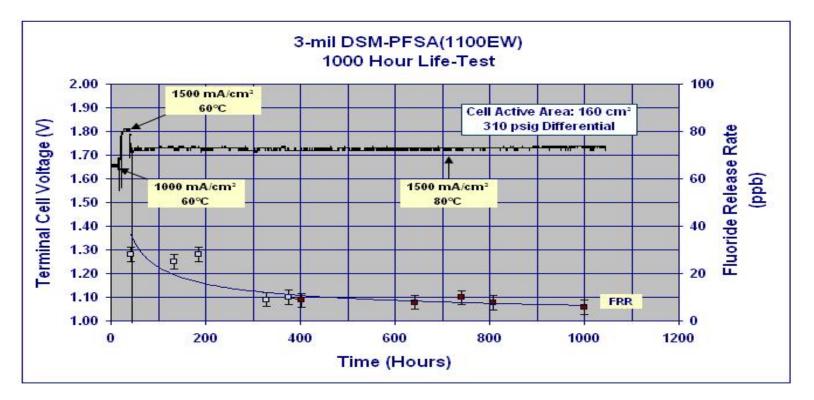
Approach

- □ Develop a new low-cost dual-layer structure
 - Evaluate methods of bonding dissimilar metal films
 - Evaluate non-metal substrate with conductive coating

Objectives

- Reduce BOP capital cost
- □ Reduce BOP power consumption
- □ Increase stack active area
- □ Improve safety and reliability
- Design for high-volume manufacturing

Approach

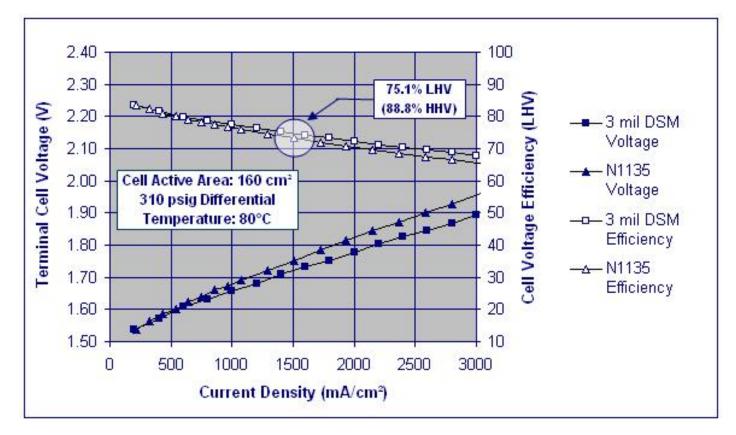

- Team with large volume commercial manufacturer (domnick hunter group of **Parker-Hannifin**)
- Redesign system to eliminate or replace costly components
- Laboratory evaluation of lower-cost components and subsystems
 - Design & test high efficiency H₂ dryer
- Develop higher efficiency power electronics

Membrane Progress

Supported Membrane

- Membrane Performance
 - @ 80°C & 240Amps(1500 mA/cm²)
 - □ Voltage:1.71-1.73V
 - □ Efficiency: 75.1% LHV (88.8% HHV)
 - □ Completed 1000 Hour Life Milestone

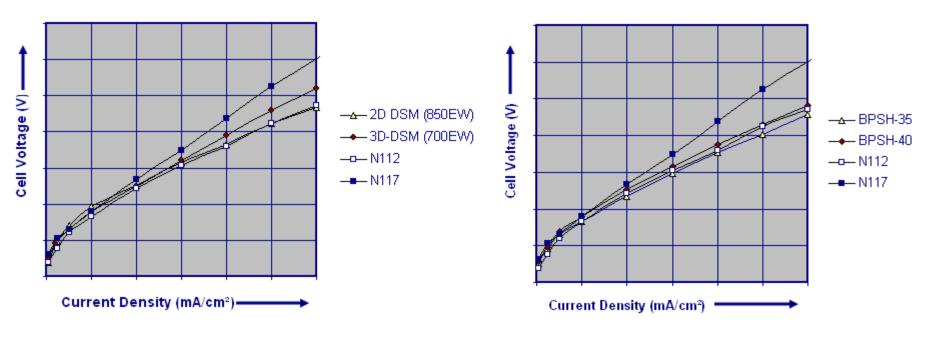
Membrane Degradation


- □ F ion Release Rate: 3.7 µg/hr
- □ Life Time Estimate: 45-55,000 hours

Membrane Progress

Supported Membrane

Performance Milestone 3-mil DSM[™] (PFSA-1100EW) vs. Nafion[®] 1135



Membrane Progress

Evaluation in 50cm² Hardware

DSM™ Results

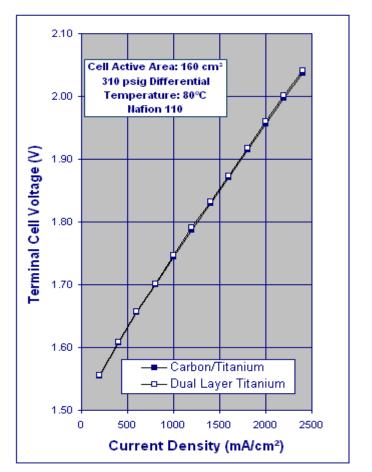
BPSH Results

Membrane Evaluation

- □ 50cm² Single-Cell Testing, 95°C, 1200 mA/cm²
- Performance
 - 2D DSMTM Performance equivalent to Nafion[®] 112
 - 3D DSMTM equivalent to Nafion[®] 115
 - BPSH35 > Nafion[®] 112

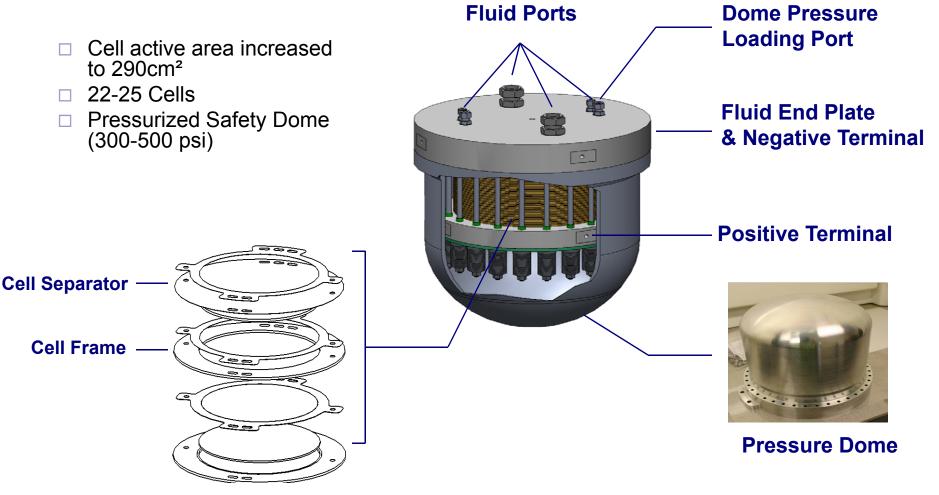
Cell-Separator Progress

Separator Fabrication & Evaluation



Zr/Ti & ZrN/Ti

Carbon/Ti


- Properties
 - \Box Conductivity (S/cm) > 300
 - Low Porosity
 - POCO Pyrolitic Graphite (Surface Sealed)
- Evaluation (500 hrs)
 - Zr/Ti & ZrN/Ti coating loss
 - Water Quality
 - Zr/Ti & ZrN/Ti: 1.5 MΩ
 - Carbon/Ti: 14.7 MΩ
 - □ Hydrogen embrittlement analysis
 - Zr/Ti & ZrN/Ti: 140 & 31ppm H₂
 - Carbon/Ti: 64ppm H₂
 - Dual Layer Ti: 1105 ppm H₂

Performance Milestone

Preliminary Stack Design Progress

Repeating Cell Unit

Preliminary System Design Progress

- P&ID, PFD, Control Diagrams completed
- □ Extensive safety review completed
- □ Component evaluations (Efficiency%)
 - Water Pump: (80%)
 - Multistage centrifugal
 - Larger capacity pumps exhibit higher efficiencies
 - H₂-Dryer: (97%)
 - Dual desiccant w/ vacuum assist
 - \Box Cooling H₂ prior to dryer
 - Rectifier: (93-95%)

System Design Specifications

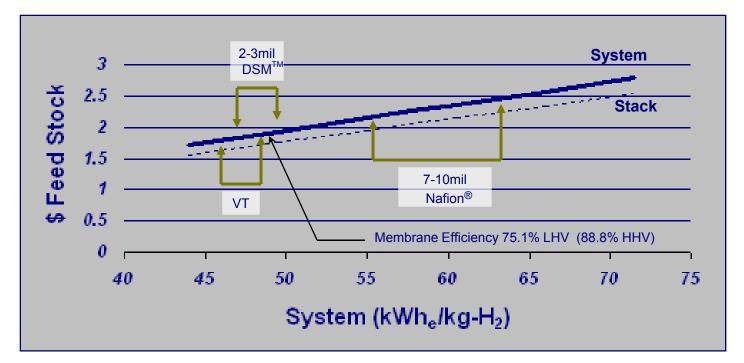
Production Rate	0.5 kg H ₂ /hr	
Operating Pressure	300-400 psid ; H ₂ 300 psig; O ₂ atm	
Operating Temperature	50-90°C	
Membrane	DSM-PFSA, BPSH, DSM-BPSH	
Stack Size	290 cm²/cell, 22-28 Cells	
Stack Current Density	1500-2000+ mA/cm ²	

System Progress

Component Evaluation Display **User Entry Pad Center Column** Stack Safety Cage H₂-Gas Separator Power Supply Cabinet Electrolyzer Stack Water Tank & O₂ Separator Water Pumps H₂ Gas Sensor Electrical Membrane Control Subsystems & Components

Top (Cover Removed)

Automated Testing


- Stacks; 160-cm² and 290-cm² hardware to 40kW
- Efficiency Evaluation
- **Process Evaluation**

De-ionizers

Membrane vs. Feed Stock Cost

Feed stock costs generated with H2A rev 2.0. Operation @ 1500 mA/cm², 80-90°C. Electric cost = \$0.039/kWhr

Projected H₂ Cost

Specific Item Cost Calculation

Hydrogen Production Cost Contribution

ing all egen i readouon ee	nyurogen i roudellon oost oonlindulon					
H2A Model Version	Rev. 1.0.11 (FY2007)	Rev. 1.0.11 (FY2009)		Rev. 2.0 (FY2009)		
(Yr)	Includes Delivery			Delivery not included		
Capital Costs	\$1.78	<\$1.47		<\$0.86		
Fixed O&M	\$0.80	<\$0.62		<\$0.53		
Feedstock Costs \$1.54 min. @ 39.4 kWh _e /kg H ₂	\$2.14 (N117)	\$1.86 (DSM ™)		\$1.86 (DSM ™)		
Byproduct Credits	\$0.00	\$0.00		\$0.00		
Other Variable Costs (including utilities)	\$0.04	\$0.02		\$0.02		
Total Hydrogen Production Cost (\$/kg)	4.76	3.97		3.28*		

H2A Model Analysis Forecourt Model

- Design capacity: 1500 kg H₂/day
- Assume large scale production- costs for 500th unit
- Assume multiple stacks/unit
 - Low-cost materials and component manufacturing
- 333 psig operation. H₂ compressed to 6250 psig
- Operating Capacity Factor: 70%
- Industrial electricity at \$0.039/kWhr

* Total cost of delivered hydrogen (\$/kg) in H2A Model Rev. 2.0 is \$5.20 (Cost of delivery in Rev. 1.0.11 is \$0.69; Rev 2.0, \$1.92).

Future Plans

FY2009

Continue development of low cost, high efficiency membrane

Further exploration of BPSH membrane
Random, Block, & Cross-linked copolymers
Life-testing of BPSH to determine durability

Scale-up of membrane and cell-separator to 290-cm²

- Complete electrolyzer stack and system preliminary designs
- FY2010
 - Fabricate deliverable stack
 - Fabricate electrolyzer system

Summary

- GES & VT have made significant progress in membrane development
- GES DSM[™] development has
 - Demonstrated reproducibility and durability
 - Improved stack efficiency significantly
- System development efforts are expected to
 - Reduce BOP fabrication costs
 - □ Increase life of the low-cost, long-life separator
 - □ Improve BOP components efficiency
- To meet DOE targets for hydrogen production cost, significant cost reductions are still needed in:
 - □ System
 - Increase Active Area
 - Gas Compression
 - Gas Storage