

Indirectly Heated Biomass Gasification

Richard Bain May 20, 2009 PD_27_Bain

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC

Overview

Project Summary

Relevance	To obtain new data on integrated gasification and processing to strengthen the technical basis for the 2012 (\$1.60/gge) and 2017 (\$1.10/gge) plant gate MYPP cost objectives for hydrogen produced via biomass gasification
	Address efficiency, capital intensity, and reforming barriers
	Identified by NRC as a primary near term route for central hydrogen production
Approach	A three phase approach was used: 1) gasification, reforming, and shift reaction testing to produce a hydrogen-rich syngas, 2) material and energy balance modeling using updated gasifier correlations, and 3) updating capital costs, operating costs, and H2A economics
Technical Progress	Parametric gasification experimental testing complete
	Gasification / tar reforming / shift reaction proof of concept testing complete
	New gasifier yield correlation development complete
	ASPEN model and CAPEX/OPEX update complete
	Updated H2A economics spreadsheet complete

Objectives and Key Outcomes

Objective:

To experimentally update the technical & economic performance of an integrated biomass gasification-based hydrogen production process based on steam gasification

- Steam gasification
- Gas cleanup: tar & light hydrocarbon reforming
- Shift reaction

Key Outcomes Expected:

- Production of clean syngas
- Production of hydrogen-rich gas
- Development of updated yield and gas quality correlations
- Development of updated technoeconomic model
- Development of updated H2A model

Approach

Data	Process	Economic
Generation	Modeling	Modeling
 Parametric Gasification Testing Performed using indirect steam gasifier 2 feeds (oak, pine) 3 temperatures (750, 850, 950°C) 3 steam/biomass ratios 20 kg/h biomass Tar reformer testing at a selected condition Slip-stream syngas processing at a selected condition H₂S removal High temperature shift 	 Gasifier Correlation Parametric data Multivariate analysis (Unscrambler) ASPEN Analysis ASPEN gasifier correlation FORTRAN block ASPEN H2 integrated plant analysis EXCEL Summaries Comparison with 2005 Model 	 Import of Process Modeling Results into H2A Comparison with Previous Results

NREL Thermochemical Process Development Unit & Slip-Stream Shift System

Innovation for Our Energy Future

Technical Accomplishments

Representative Gasification Data, Steam Gasification of Pine

Comparison of tar concentrations in raw oak- and pine-derived syngas for quantified species for experiments at 850°C and steam/biomass = 2

Technical Accomplishments

Species	m/z	Tar Concentrations (mg/Nm ³ - wet bas	
		oak	pine
Benzene	78	4860	4690
Toluene	92	1510	1540
Phenol	94	690	1090
Cresol	108	100	100
Naphthalene	128	1250	1310
Phenanthrene	178	390	570
"other tar"	80-176	2900	3190
"heavy tar"	180-400	2930	3590
Total (>m/z 78)		9770	11380

Tar compositions and yields are comparable for oak and pine, indicating that for woody feedstocks, tar yield is a function of processing conditions, not

feed.

Average concentrations (mg/Nm³-dry basis) of pine-derived tars in raw and reformed gas.

		Species	m/z	Tar Con	centr	ations (mg/Nm	³ – dry basis)
				Raw ga	S	Reformed gas	Reduction % ^a
		Benzene	78	11170		7880	29.4
		Toluene	92	3650		230	93.7
		Phenol	94	2200		60	97.3
		Cresol	108	180		-	100
		Naphthalene	128	2980		1090	63.4
1.0	Equilibrium Catalyst	Phenanthrene	178	1240		230	81.4
0.8		"other tar"	80-176	6300		240	96.2
6	850	"heavy tar"	180- 400	6270		120	98.1
al Olie None		Total (>m/z 78)		22830		1960	91.4
0.4 L 0.2	775				Th	e equilibrium (deactivated) ca
	<u>۰</u>	(a) % reduction	 – concentrati 	on basis	Wć	as ellective In C	converting mos

not normalized for volume change

talyst t tars other than benzene and naphthalene

2

3

Time (Hours)

4

5

1

0.0

Hydrogen:Carbon Monoxide Ratio High Temperature Shift Reaction using Syngas

Multivariate Analysis of Parametric Gasification Data

Technical Accomplishments

Equation: $Y = a + \sum (b \cdot X + c \cdot X^2)_i$, where

Y = Component Value, [=] mole %, kg/kg feed, or mg/Nm³, X = Independent Variable

Independent Variables (X)

- Proximate Analysis (Moisture, Volatile Matter, Fixed Carbon), [=] wt%
- Ultimate Analysis (Carbon, Hydrogen, Oxygen, Nitrogen, Sulfur, Ash), [=] wt%
- Temperature (TC), [=] °C
- Steam to biomass ratio (SB)
- Residence Time (RT), [=] sec
- Interactions (TC:SB, TC:RT, SB:RT)

Component	NREL PDU Correlation	BCL PDU Correlation	
Hydrogen	0.81	0.92	
Carbon Dioxide	0.81	0.42	
Carbon Monoxide	0.73	0.40	
Methane	0.84	0.70	
Acetylene	0.96	0.72	
Ethylene	0.96	0.88	
Ethane	0.72	0.85	
Propane	0.90		
Propylene	0.95		
1-Butene	0.88		
2-c-Butene	0.71		
2-t-Butene	0.71		

Component	NREL PDU Correlation	BCL PDU Correlation	
Hydrogen sulfide	0.85		
Benzene	0.97		
Toluene	0.83		
Phenol	0.83		
Cresols	0.94		
Naphthalene	0.98		
Phenanthrene	0.98		
Heavy Tar, MW > 180	0.55		
Total Tar, MW > 78	0.77	0.89	
Char	0.74	0.66	

Comparison of Predicted and Measured Hydrogen Concentration NREL PDU Correlation

Biomass to Hydrogen Block Flow Diagram

(Spath et al, 2005)

Technical	Accomplishments	

	Existing (9-20	08) H2A Model	Revised (3-2009) H2A Model		
Cost Component	Cost Contribution (\$/kg)	% of H2 Cost	Cost Contribution (\$/kg)	% of H2 Cost	
Capital Costs	0.50	34.12	0.47	31.47	
Decommissioning Costs	0.00	0.05	0.00	0.04	
Fixed O&M	0.20	13.61	0.19	12.47	
Feedstock Costs	0.53	36.26	0.50	33.64	
Other Raw Material Costs	0.10	6.86	0.08	5.41	
Byproduct Credits	0.00	0.00	0.00	0.00	
Other Variable Costs (including utilities)	0.13	9.11	0.25	16.99	
Total	1.47		1.49		
Production Process Energy Efficiency	48.29%		49.00%		
Feedstock energy input (GJ)/kg H2	0.242		0.228		
Utility energy input (GJ/kg H2)	0.007		0.017		
Hydrogen energy output (GJ/kg)	0.120		0.120		
Byproduct energy output (GJ/kg H2)	0.000		0.000		

02D_Future _Central_Hydrogen_Production_via_Biomass _Gasification_version_2.1.2.xslm http://www.hydrogen.energy/h2a_prod_studies_html (2/9/2009)

Gasifier or Process Variable	Existing ASPEN Model	Updated ASPEN Model	
Gasifier Dry Gas Yield, Lbmol of dry gas/Ib of dry feed	0.35	0.45	
Gasifier H ₂ :CO molar ratio	0.57	1.31	
Gasifier Gas Heating Value Btu/Ib	Wet: 4,759 HHV 4,401 LHV Dry: 8,019 HHV 7,416 LHV	Wet: 4,283 HHV 3,899 LHV Dry: 6,104 HHV 5,557 LHV	
Gasifier Char Yield, lb/lb of dry feed	0.22	0.10	
Gasifier Efficiency	72.1% HHV 71.8% LHV	70.8% HHV 69.3% LHV	
Overall Process Hydrogen Production	15,322 lb/hr (69.2 MMSCFD)	15,510 lb/hr (70.1 MMSCFD)	
Electricity Purchased from Grid	22,361 kW (29,987 HP)	21,249 kW (28,496 HP)	
Natural Gas	0.085 Nm ³ /kg H₂	0.150 Nm ³ /kg H ₂	
Wood price, 2005\$, \$/dry tonne	\$60	\$60	
H2A Price, 2005 Dollars and Assumptions	\$1.47	\$1.49	

Collaborations

- Collaboration with the DOE Office of the Biomass Program (OBP) sponsored research at NREL
 - Gasification & tar reforming
 - OBP gasification data used in new correlation
 - New correlation to be used in OBP design models

Proposed Future Work

• This project is complete

Summary

- The objective of the study was to update the technical and economic performance of hydrogen production via biomass steam gasification.
- Although the NREL gasifier yield correlations showed significant differences in char yield (NREL 10%; BCL 22%) the integrated process gasifier heat requirements and downstream unit operations (tar reforming and shift reaction) resulted in overall process performance for a 2,000 tonne per day plant that was very similar (NREL– 70.1 MMSCFD H₂; BCL 69.2 MMSCFD H₂) and comparable costs (NREL \$1.49/kg H₂; BCL \$1.47/kg H₂).
- The new results verify conceptual process performance, based on independent pilot scale testing.
 - Parametric gasification tests were successfully performed using oak and pine at temperatures up to 950°C.
 - A new gasifier correlation was developed that includes biomass properties, temperature, residence time, and steam/biomass ratio. The correlation incorporates gasification data for other feedstocks obtained by Office of the Biomass Program research. The correlation includes a significant number of new yield components.
 - An updated ASPEN model, updated capital costs, and updated operating costs were developed.
 - An updated H2A model was developed that gave results comparable to the existing H2A model.
 - The produced syngas was used to generate a gas with high H₂ concentration in shift gas experiments. CO conversions comparable to literature values were obtained.
 - The objectives of the study were met.