

Hydrogen Delivery

Monterey R. Gardiner

2009 DOE Hydrogen Program & Vehicle Technologies Program

Merit Review and Peer Evaluation Meeting
May 21, 2009

Goal and Objectives

Goal: Reduce the delivered cost of hydrogen to <\$1.00/gge (gallon gasoline equivalent)*

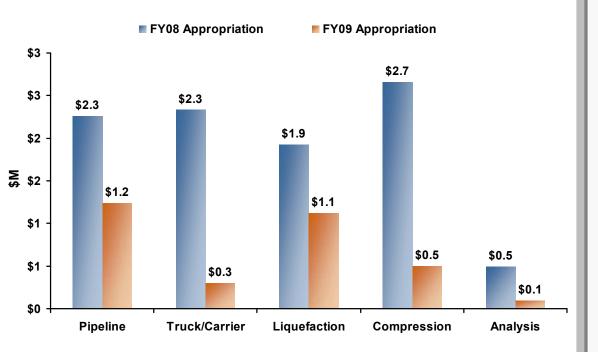
Near-term: Low Investment Needs

- Existing Pipeline Infrastructure
- Gaseous Hydrogen Delivery by Truck
- Liquid Hydrogen Delivered by Truck
- High Pressure Low Temperature by Truck
- Railway

Longer-term: Lowest Delivered Cost

(large investment in delivery infrastructure needed)

- Pipelines
 - > Steel
 - > Fiber Reinforced Polymer
- Specialized Carriers
 - ➤ N-ethylcarbazole "like" liquid carrier
- Compression
 - Electrochemical
 - Centrifugal
- Low Cost Bulk Storage
 - > At Station
 - ➤ Near Production (Geologic Storage)


In the United States, about **9 million tons** of hydrogen are produced annually for industrial purposes, and there are about **1,200 miles** of hydrogen pipelines.

^{*} Delivery costs and target currently under review.

Delivery Budgets Focus on Key Technologies

FY 2009 Appropriation = \$2.8M FY 2008 Appropriation = \$9.5M

EMPHASIS

- Reducing Compression Cost

- Centrifugal compression system design using "off-the-shelf" parts
- High RPM system to reduce size and cost
- High pressure/temperature Test Bed to develop coatings and materials
- · Electrochemical -SBIR

Higher Capacity Truck Delivery

- · Large volume/high pressure gas
- High pressure, low temperature using glass fibers

Advanced Liquefaction

- · Leveraging Ortho-Para conversion
- Helium cycle with novel heat exchanger configuration

Analysis

- Adding 700 bar and cryocompressed costs
- Evaluating pathways and largest cost contributors
- · Evaluating purification costs

Hydrogen Delivery via Three Existing Options & Supporting Technologies

1. Hydrogen Pipelines

- Embrittlement issues
- Capital equipment and labor cost
- New materials such as fiber reinforced pipe for wider use
- Potential quality concerns
- 2. Gaseous Hydrogen via Tube Trailer Truck
 - Limited capacity
 - Capital equipment cost
 - Regulatory acceptance
- 3. Liquid Hydrogen via Truck
 - Energy penalty
 - Boil-off
 - Capital equipment cost

Supporting Technologies

Hydrogen Carriers

- Energy and material cost for regeneration
- Cycle life
- Increased hydrogen capacity
- Environmental issues

Compression and Storage

- Compression for pipelines and stations
- Bulk storage for winter maintenance, summer peak and at the station

Fiber Reinforced Polymer Pipe (ORNL and SRNL)

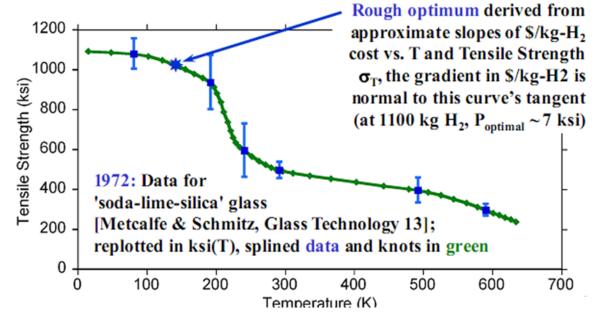
Fiber Reinforced Polymer (FRP) Pipe

- Completed Test Regimen
 - Accelerated-aging showed no degradation
 - Completed Hydrogen Compatibility Testing in Fiberspar FRP Pipeline Specimens
 - Fiberspar specimen passed blow-down testing
 - Predicted leakage rate < 0.02% per day

 - Increased joint leakage with flexural loading
- Developed FRP Life ManagementResearch Plan

Leakage Measurement at Oak Ridge

Tube Trailers (Current Status ~300 kg H₂ on board)


Lincoln Composites

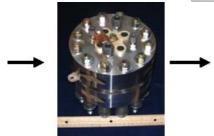
- New system doubles capacity -600 kg H₂
- Achieved large scale dome molding & tubular welding of tanks
- Completed large scale filament winding of tanks

Lawrence Livermore National Lab

- Designed for triple capacity -1100
 kg H₂
- Verified 80% higher glass fiber strength at 140 K compared to 300 K
- ~\$6/kg glass fiber vs. ~\$23/kg carbon fiber
 - 50% trailer cost reduction (~\$400K to ~\$200K)


Compression


Concepts NREC


- Create a hydrogen centrifugal compressor using "off-the-shelf" parts
- Develop design criteria and performance specifications

Fuel Cell Energy

- Increased compression ratio reduces # of stages & associated capital costs
- Increased operating hours supports reduced maintenance requirements
- Increased pressure cycling validates progress from proof of concept to a viable technology

Electrochemical Hydrogen Compressor

Liquefaction

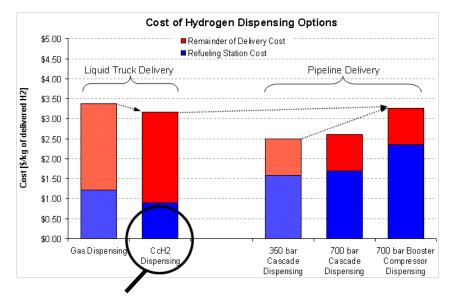
Prometheus: Active Magnetic Regenerative Liquefier (AMRL)

 Completed test lab-prototype specifications for 290 K to 120 K cooling operation

Praxair: Ortho-Para Approach to Liquefaction

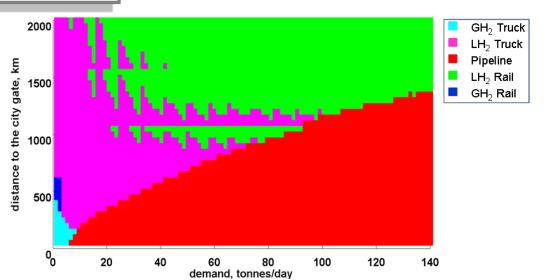
- Developed new model
- Developed large and small test systems

The AMRL cold box on the left is a double walled dewar. The AMRL cryocooler on the right is a proven two-stage GM model


H2A Component Model and Hydrogen Delivery Scenario Analysis Model- HDSAM

ANL

- Added 700 bar fueling to HDSAM (currently being vetted)
- Added cryocompressed fueling (CcH₂) to HDSAM (currently being vetted)


NREL

- Designed preliminary version of Hydrogen Rail Component Model
- Rail delivery appears to be a viable lowcost option for long distances and large demands

CcH₂ onsite cost is up to 30% of the onsite cost of a 700 bar station

Lowest Delivery Cost Pathway Map (station capacity is 1,000 kg/day)

Hydrogen Delivery Progress in FY 2009

- Significant progress was achieved in all delivery technologies
- Continue hydrogen delivery systems analysis development
 - Added 700 bar and cryocompressed refueling
 - Updating component tab, including Rail delivery information
 - Assessing geologic storage costs and purification needs
- Continue pipeline R&D assessment

Hydrogen Delivery Team

Monterey Gardiner

Delivery (202) 586-1758 monterey.gardiner@ee.doe.gov

Rick Farmer

Production & Delivery (202) 586-1623 richard.farmer@ee.doe.gov

Fred Joseck

Systems Analysis (202) 586-1932 fred.joseck@ee.doe.gov

Field Office Project Officers:

Lea Yancey, GO
David Peterson, GO
Paul Bakke, GO
Katie Randolph, GO

Support:

Steve Pawel, ORNL Anna Domask, Energetics