Oil-Free Centrifugal Hydrogen Compression Technology Demonstration

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. May 19, 2009

Project ID # PD_34_Heshmat

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- September 1, 2008
- Funding Authorized 2/28/09
- August 31, 2011
- 5 Percent Complete

Budget

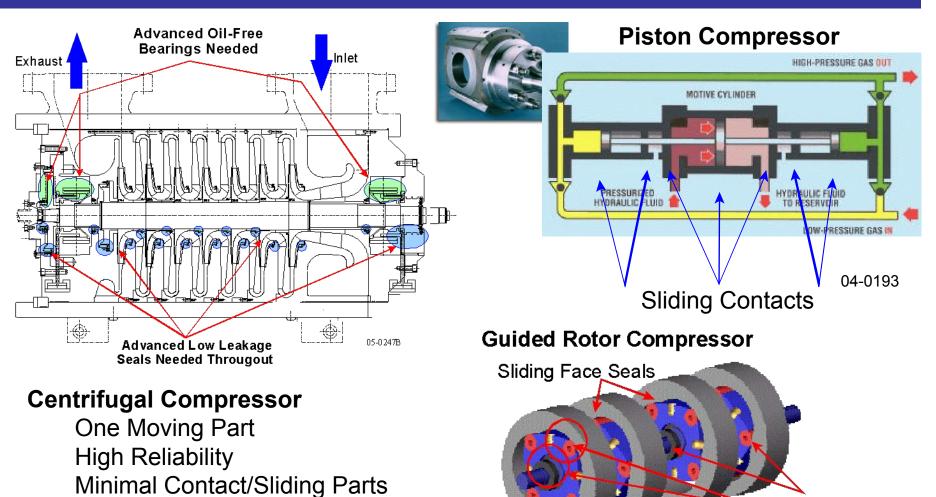
- Total project funding
 - \$2,992,416 DOE
 - \$1,149,253 MiTi[®]/MHI
- \$1,496,208 FY08/09 Funding
- \$1,496,208 FY10/11 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H2 Gas Compression

Partners

- Lead: Mohawk Innovative Technology, Inc. (MiTi[®])
- Mitsubishi Heavy Industries


Objective:

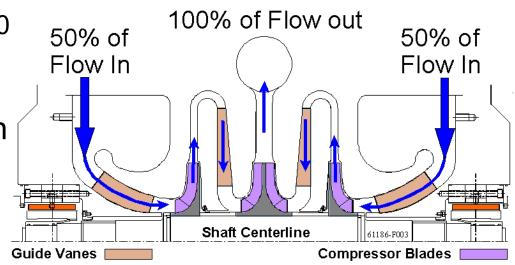
- Demonstrate key technologies needed to develop reliable and cost effective centrifugal compressors for hydrogen transport & delivery
 - Flow 500,000 to 1,000,000 kg/day
 - Pressure rise to 300-500 psig

- Contaminant-Free/Oil-Free Hydrogen					
	Project Target				
Category	2005 Status	FY2012	FY2017		
Reliability	Low	Improved	High		
Energy Efficiency	98%	98%	>98%		
Capital Investment (\$M) (based on 200,000 kg of H2/day)	\$15	\$12	\$9		
Maintenance (% of Total Capital Investment)	10%	7%	3%		
Contamination	Varies by Design		None		

Hydrogen, Fuel Cells & Infrastructure Technologies Program October 2007

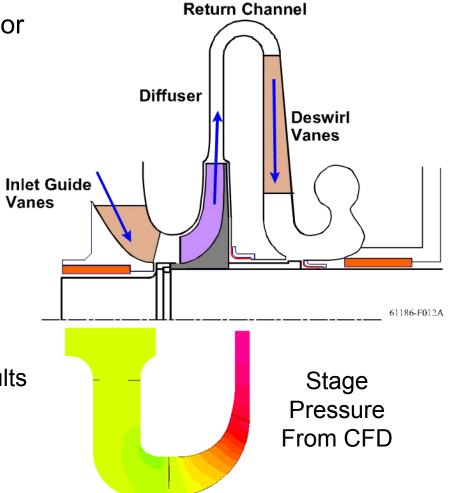
Relevance - Candidate Compressors

Rolling/Sliding


Contacts & Bearings

04-0194

High Efficiency and High Flow


Approach/Project Plan

- Review Design Requirements
 - 500,000 kg/day of H2
 - Output Pressure 1200-1500
 Psig
 - 100-200 Mile Range
- Verify High-Speed Design
 - Double Entry Design
 - Seven Compressor Stages
 - Multiple Machine Frames
- Select Stage & Speed
- Size Bearings and Seals

Approach/Project Plan

- Design Single Centrifugal Compressor Stage
 - Inlet & Impeller
 - Diffuser & Return
 - Vane and Exhaust
- Compressor Design Analysis
 - Computational Fluid Dynamics
 - Finite Element Structural Analysis
- Oil-Free Bearings and Seals
- Fabricate and Test to Characterize Pressure & Flow
- Scale System Design
 - Use Test Data & CFD Analysis Results
 - Update Multi-Stage, Multi-Frame Compressor System Design
 - Predict Full Compressor System Performance

Demonstrate feasibility of very high speed hydrogen centrifugal compressor through test.

Project Milestones

Month/Year	Milestone or Go/No-Go Decision			
July-09	Project Milestone: Complete preliminary modular centrifugal compressor frame design to achieve pressure and flow. Select stage for detailed design, fabrication and test.			
April-10	Project Milestone:Complete single stage compressor design including inlet,impeller, diffuser, return channel.Complete oil-free bearing and seal mechanical componentsystem designs			

FY10 DOE Milestone: Down select novel compression technology for hydrogen delivery.

Related SBIR Technical Accomplishments:

Compressor Assessment

Compressor	Efficiency		Poliability	Costs		
Туре		ciency	Reliability Acquisition O		0 & M	Contaminants
					High -	
					Overhauls,	
		Friction &	Low - Wear &	High -	Outages,	
Piston	Low	Inertia	Vibrations	Multiple Units	Efficiency	Yes - Oil
					High -	
		Friction &	Low - Wear of		Efficiency,	
Guided Rotor	Low	Inertia	Seals & Rollers	Medium -High	Bearing Life	Yes - Oil
Centrifugal	High		High	Medium	Low	No

SSME Turbopump Configurations

Developed in the 1970's

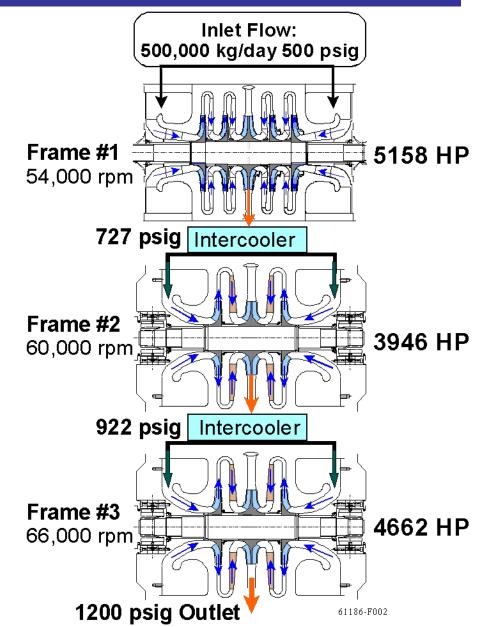
Liquid Hydrogen:

Series Design 6,500 psig 4,500 kg/min 76,000 HP 36,000 rpm

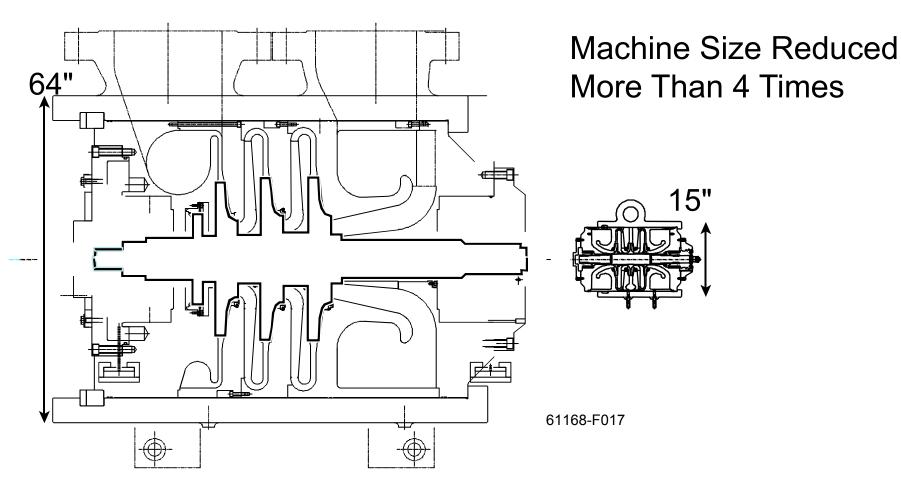
Liquid Oxygen:

Double Flow Impeller 7,500 Psig 32,200 kg/min 26,000 HP 24,000 rpm

Plagued with Bearing Life Issues I.e., 10 Missions

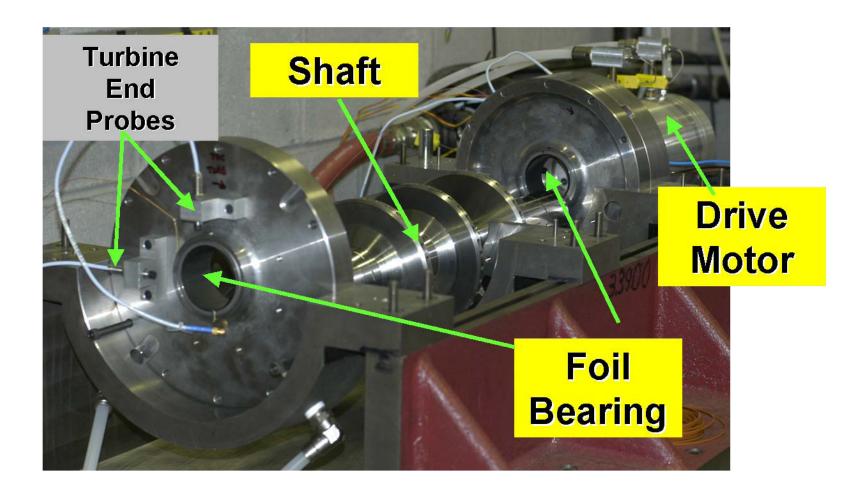

Related SBIR Technical Accomplishments:

Compressor Preliminary Design


Final Summary							
Maximum He	ad = 60,00	00 ft	Maximum Discharge Temp = 300F		Interstage Temperature = 200F		
Compressor	Power	Pressure	Suction Flow	Speed	Specific	Diameter	Tip Speed
Stage	(hp)	(psig)	(Cu-ft/min)	(rpm)	Diameter	(Inches)	(ft/sec)
Inlet		500	3616				
1	1626	573	3616		1.50	6.45	1521
2	1718	645	3400		1.56	6.42	1513
3	1814	727	3194		1.63	6.41	1511
Outlet #1	5158	727		54000			
Inlet #2		712					
4	1918	817	2960		1.55	5.92	1550
5	2028	922	2776		1.62	5.91	1548
Outlet #2	3946	922		60000			
Inlet #3		912					
6	2262	1054	2570		1.54	5.48	1578
7	2400	1200	2400		1.62	5.48	1578
Outlet #3	4662			66000			

- Previous Efforts Identified Centrifugal Compressor Configuration Feasibility and Technology Needs
 - Internal MiTi[®] & MHI Company Funding
 - DOE SBIR
- Preliminary Compressor Design Completed
 - 500,000 Kg/day @ 1200 psig
 - Total No. of Stages Needed (7 Stages)
 - Impeller Diameters and Operating Speed Ranges Established (up to 66,000 rpm)
 - Total Driving Power < 14,000 HP

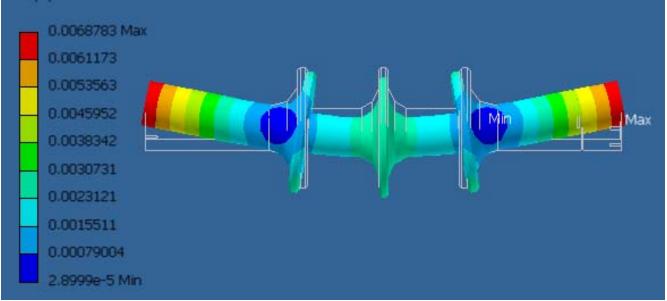
High-Speed Compressor Benefit



Foil Bearings for H₂ Compressor

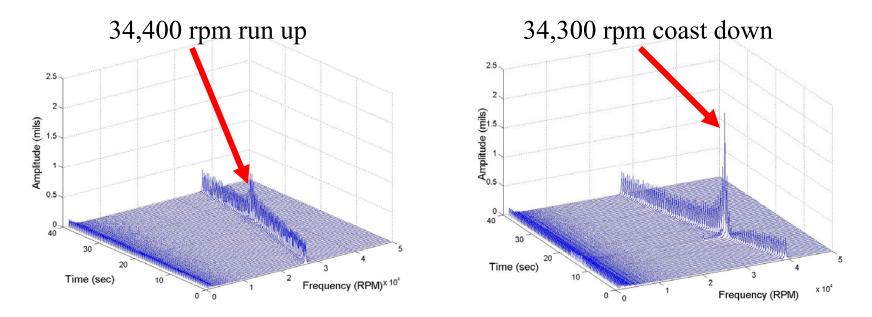
- Foil Bearings Sized
 - Journal Bearings
 - Diameter = 2.5" (63 mm)
 - Length = 2.0" (50 mm)
 - Projected Area = 5 in²
- Bearing Coating Selected
 - MiTi[®] Korolon[™] 900
 - 25 lb load capacity @ Start Up (N=0)
- Bearing Stiffness Designed
 - 20-30k lb/in/in
- Theoretical Load Capacity
 - 500 lb @ 800 fps

Dynamic Simulator Designed & Built



Simulator FE Model

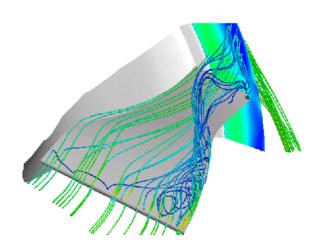
FEA rotor model analysis and experiment compared.


	1 st Bending Mode (krpm)			
Configuration	Measured	Predicted		
Test Simulator Rotor System	31.80	31.80		
Rotating Critical Speeds	34.35	34.32		

✤ Correlation achieved within < 0.1%.</p>

Supercritical Operation

• Experimental plots of rotor run-up and coastdown through bending critical speed.



Drive End Vertical Sensor (X1V) – T3R21

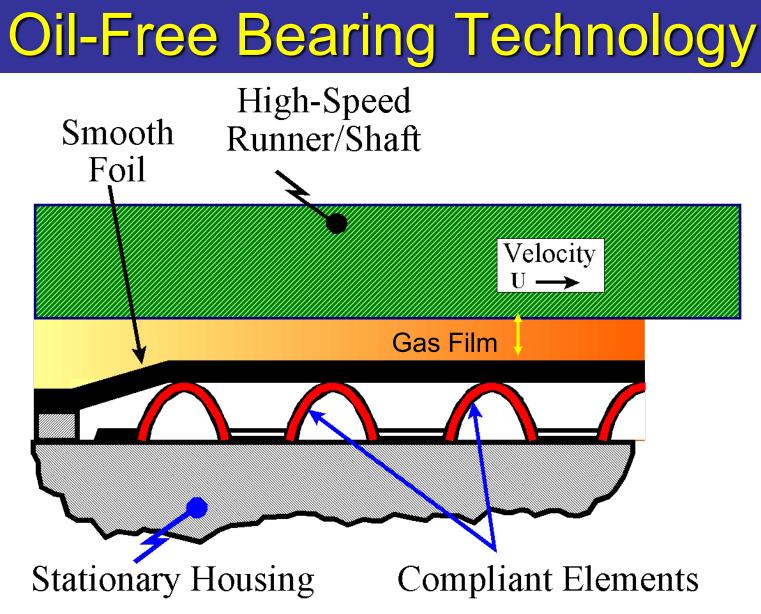
Excellent correlation with experimental results and system stable as expected

Collaborations

- Partner/Subcontractor
 - Mitsubishi Heavy Industries (Industry)
 - Centrifugal Compressor Stage Design
 - CFD
 - FEA
 - Single Stage Compressor Test

Identified Technology Needs

- Required High Speeds Dictate
 - Advanced Centrifugal Compressor Aerodynamic and Structural Design
 - High Stresses
 - Efficient and Effective Flow Path
 - High-Speed, Oil-Free Foil Bearings
- Hydrogen Requires
 - Novel Low Loss Seals
 - Low Friction and Long Wear Life Foil Bearing and Foil Seal Hydrogen Compatible Coatings
 - Hydrogen Compatible Materials

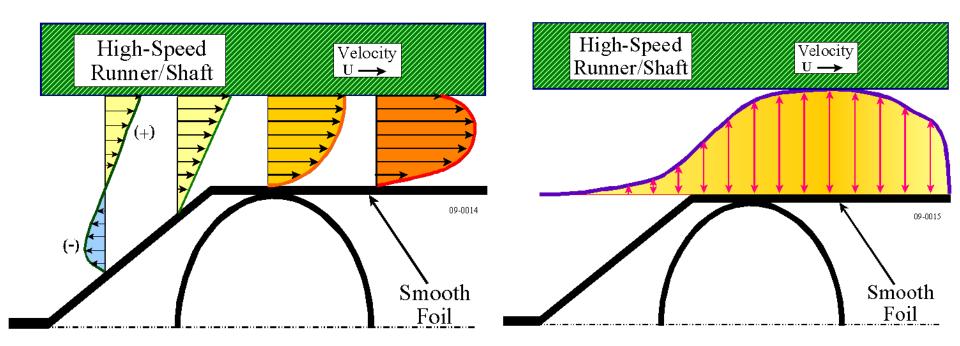

Future Work for FY09-FY10

- Refine Multi-Stage/Multi-Frame Compressor Concept
 - Establish Stage Pressure Ratios and Flows
 - Define and Select Optimum Operating Speeds
 - Select One Stage for Detailed Design and Test
- Preliminary Design Review with DOE
- Conduct Detailed Design
 - Establish Flow Path Including Inlet, Impeller, Diffuser and Return Channel Designs Using Established Design Analysis and Computational Fluid Dynamics
 - Design Foil Bearings and Seals Using Coupled Elasto-Hydrodynamic Analysis
 - Design Test Shafting Using Finite Element Rotor-Bearing System Analysis

Project Summary

- This project proposes to demonstrate that advanced and very high-speed, oil-free centrifugal compressors can meet hydrogen delivery needs
- MiTi[®] and MHI have shown analytically that multiple multi-stage very high speed centrifugal compressors operating in series are necessary and feasible.
- A key compressor stage will be designed, fabricated and tested to validate the concept and demonstrate overall system feasibility based upon advanced 3-D aerodynamic designs combined with oil-free compliant foil bearings and close clearance compliant foil seals
- Under this effort, compressor blade tip speeds, and bearing and seal surface velocities exceeding state-of-art will be designed, built and evaluated

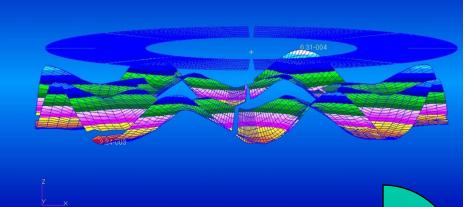
Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc

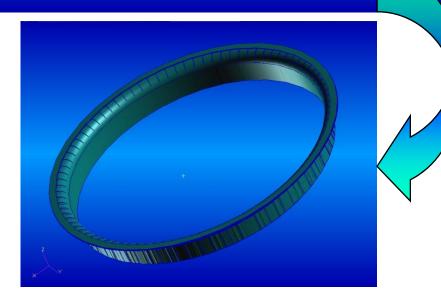

⁰⁹⁻⁰⁰¹³

Supplementary Slide

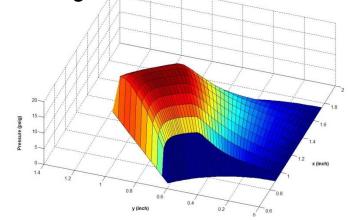
Oil-Free Bearing Technology

Velocity Profile

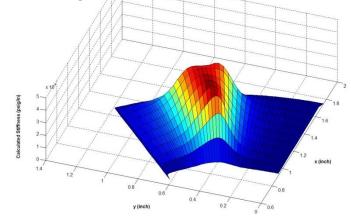

Pressure Profile



Supplementary Slide


Coupled Elasto-Hydrodynamic Seal Analysis

Patran 2008r1 (MD Enabled) 10-Mar-09 14:13:49 Fringe: 1, A1:Incr=10,Time=1.00000, Displacement, Translation, Magnitude, (NON-LAYERED) Deform: 1, A1:Incr=10,Time=1.00000, Displacement, Translation,



Single Pad Pressure Profile

Single Pad Stiffness Profile

