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Overview

Timeline
• Start – March 2004
• Finish – September 2011
• 40% Complete

Barriers Addressed
• High capital cost and hydrogen 

embrittlement (HE) of steel pipelines
– Preventive measures for HE and 

permeation 
– Improved joining methods to reduce 

cost and mitigate HE
• Safety, codes and standardsBudget

• Total Project Funding
− DOE share: $815,000
− Contractor share: N/A

• Funding received in FY08:
− $300,000

• Funding for FY09: $0

Partners
• Oak Ridge National Laboratory
• Savannah River National Laboratory
• University of Illinois
• Praxair
• MegaStir Technologies 
• Edison Welding Institute
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Project Focus: Weld Property Assessment 
& Welding Technology Development
• Challenges:

– Weld region is generally more vulnerable to 
hydrogen induced property degradation 
(sensitized microstructure, high weld 
residual stress, exposure to hydrogen)

– Existing testing methods are not suitable to 
quantify the tolerance level to HE of weld

– Lack of technical basis and guidelines for 
managing hydrogen, stresses, and 
microstructure in the weld region to ensure 
the structural integrity and safety of H2 
delivery infrastructure

• Goal: Improve resistance to hydrogen 
embrittlement (HE) in steel weldment and 
reduce welding related construction cost

Base metal Weld metal
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Objectives

• Quantify the effects of high-pressure hydrogen on 
property degradation of weld in pipeline steels

• Develop the technical basis and guidelines for 
managing hydrogen, stresses, and microstructure 
in the weld region to ensure the structural integrity 
and safety of H2 pipelines; & 

• Develop welding/joining technology to safely and 
cost-effectively construct new pipelines and/or 
retrofit existing pipelines for hydrogen delivery. 
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Approach
• Understand hydrogen transport behavior in steels and weld region

– High pressure (up to 5,000 psi) hydrogen permeation and diffusion 
measurement and modeling

– Effect of steel composition and microstructure
– Effect of surface conditions

• Determine mechanical property degradation in weld region
– Effective testing methods for welds

• Quick screening/comparative test
• Weld property generation for fracture mechanics based pipeline design

– Evaluation of weld microstructure effect in old and new pipeline steels
• Welding technology development for new construction, repair and 

retrofitting existing pipeline infrastructure for hydrogen delivery
– Weld residual stress and microstructure management
– Hydrogen management

• Develop technical basis and guidelines for welding construction and 
maintenance of hydrogen pipelines
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Technical Accomplishments: 
Previous Years

• High-pressure hydrogen permeation measurement system 
development and verification

• Baseline high-pressure hydrogen diffusion and permeation 
measurement with pure Iron

• Effect of weld microstructure on hydrogen trapping, 
diffusion and permeation

• Initial study on friction stir welding of pipeline steels

• Concept design and initial development of testing methods 
on weld mechanical property degradation
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Technical Accomplishments:
H Permeation & Diffusion Measurements
• Investigate the hydrogen transport 

behavior
– Hydrogen absorption/surface effect

• Influences amount and rate of hydrogen 
entering steel

– Hydrogen diffusion
• Influences crack propagation rate

– Hydrogen solubility/concentration
• Influences the degree of mechanical 

property degradation

• Under conditions relevant to hydrogen 
delivery infrastructure

– Gaseous hydrogen: composition and 
purity level

– Pressure range: up to 5,000 psi H2
– Temperature range: -40 to 150°C
– Material: Pipeline steels and their 

welds; Polymer/composite materials
– Surface condition: Naturally formed 

surface oxide layer; Surface 
coating/modification; Others

• Utilizing ORNL’s unique high-pressure 
permeation measurement system

– Charging pressure up to 150,000psi
– Temperature range: 0 to 1000°C
– Small disk specimen
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Technical Accomplishments:
Pressure Effects on Hydrogen Diffusivity

• Pd Coated Pure Iron at 200°C
• Lower “effective” diffusivity of first two runs were due to hydrogen 

traps and/or surface conditions
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Technical Accomplishments:
Diffusivity of Pure Iron and Steel A106 Gr
B of Different Microstructures

Pure Fe

144C 21C40C60C84C112C182C227C
283
C
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Technical Accomplishments:
Pressure Effects on Permeability
(Pd Coated Pure Iron)

• Permeation rate has square root dependency on pressure at given temperature
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Mechanical Testing of Weld Hydrogen 
Embrittlement
• Existing mechanical testing methods are 

generally designed for homogenous materials 
(base metal) and difficult to reliably test the 
weld region due to the complex microstructural 
and property gradients

• Two types of test methods are developed
– Multi-notch tensile specimen as a simple way for screening and comparative test 

of different regions of weld and HAZ relative to the base metal
– Spiral notch torsion test (SNTT) for sustained-load threshold value (Kth) of weld 

and HAZ
– Determine the tolerance level to hydrogen of different weld microstructures
– Both methods are under patent application

• Features of test methods
– Miniature specimen geometry
– Miniature self-loading rig (sustained load) inside the autoclave
– Continuous load monitoring
– Sampling various regions of a weld in a single test to determine the most 

susceptible region to HE in a weld
– Low cost and time effective
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Technical Accomplishments:
Multi-Notch Tensile Comparative Test

Miniature notch tensile specimen (3mm dia.) with notches to sample 
different microstructures in weld, HAZ and base metal for 

comparative evaluation

Miniature self-loading fixture with strain gage load 
sensor

Pressure vessel and instrumentation
capable of multiple tests at a time

Designed for cost-effective evaluation of weld 
microstructure in long-time exposure to high-pressure 

H2. Hydrogen induced crack will initiate and grow in the 
most sensitive (weakest) microstructure region
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Technical Accomplishments:
Baseline Test with AISI 4340 Steel

• AISI 4340 steel
– Fully hardened to ~50 Rc, Sult=285ksi
– Expected to be sensitive to HE

• Testing procedure development
– Overall design of testing device
– Effectiveness of self-loading and strain gage load cell
– Sensitivity to quantify degree of HE
– Hydrogen update rate
– Testing protocol
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Technical Accomplishments:
Multi-Notch 4340 Sample in 2000psi H2

• Pd surface coating
• Critical fracture load: ~ 45% 

of failure load in air
• Incubation time to failure: ~ 

30 min
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Technical Accomplishments:
Multi-Notch 4340 Sample in 2000psi H2
• Pd surface coating
• Pre-load to 1700N (26% of failure load in air)
• No noticeable HE initiation/growth in hydrogen for 6 

days at 23°C
• Sample was pulled broken within 5 min after removing 

from 2000psi H2 to check hydrogen level in sample
• Hydrogen was not saturated to specimen center 

(~1.5 mm from surface) after 6 days H2 for 
charging
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Technical Accomplishments:
SNTT for Kth Measurement in high-
pressure H2

• Based on a R&D100 award-winning method invented by ORNL

• 45 deg spiral notch and twist loading result in Mode I (opening mode) of 
the spiral notch

• Development for H2 testing
– Miniature load cell
– Finite element analysis was used to determine the stress intensity factor
– AISI 4340 steel was used for baseline testing procedure development
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Circumferential stress 
(crack opening stress) Circumferential displacements

Technical Accomplishments:
FEM analysis of SNTT 

Bottom surface: fixed

Top surface: Rotation of 
DOF applied
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Technical Accomplishments:
SNTT Testing of AISI 4340 Steel 
• In air : KIC = 67.4 ksi-in½

– Consistent with reported 65 - 75 ksi-in½ by standard 
CT specimen of the same steel (Bandyopadhyay et 
al, Metallurgical Transactions A, 1983)

• Under 2000psi H2
– Kth = 36 – 39 ksi-in½ (multiple samples) ~ 55% of KIC

in air.
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Proposed Future Work
• Permeation/Diffusion in High Pressure Hydrogen

– Complete comparative measurement on different grades of pipeline 
steels both weld and base metal (A106, X52, and X100)

– Study of effect of surface conditions and hydrogen purity (experiment 
and modeling)

• Mechanical Property Test of Weld
– Comparative test of X52 welds and X100 welds with multi-notch tensile 

delay cracking test
– Kth test with SNTT
– Cost effective fatigue life test 

• Welding technology development
– Friction stir welding
– Weld residual stress and microstructure management
– Cost-effective hydrogen management

• All depending on DOE funding priority and level
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Welding Technology Development: 
Friction stir welding
• A solid-state joining process, 

no melting

• Extensive thermomechanical 
deformation during FSW 
results in wrought weld 
microstructure with improve 
properties
– Conventional fusion welds 

have cast microstructure

• Eliminate/reduce the coarse 
grain HAZ (the hard spot) that 
is generally associated with 
HE in steel welds

• ORNL is working with major 
energy and welding equipment 
companies for natural gas and 
oil pipeline applications
– Expect 15-30% cost saving 

compared to today’s pipeline 
welding construction 
technology

– Superior weld property (better 
than base steel) has been 
demonstrated

– http://www1.eere.energy.gov/i
ndustry/intensiveprocesses/pd
fs/flexible_hybrid_friction.pdf
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API 5L grade X-65 steel tested in air.

Superior Weld Properties – Better Than 
Base Metal

ERW Line Pipe 
OD: 12.75”, 0.25” t

Base metal properties :
Yield: 67 ksi, Tensile: 77 ksi, 

Elongation: 33%
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Friction Stir Welding of Steel Pipe
(Prototype Pipe Welding System by MegaStir/ESAB)
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Summary
• Project Focus: Integrity of weldment in steel hydrogen 

delivery pipeline infrastructure
– Goal: improve tolerance to HE in steel weldment and reduce construction 

and retrofitting cost associated with welding

• Technology Development 
– Testing methods suitable for weld property measurement with the 

complex microstructure and property gradients
• Two testing methods are under patent application

– Welding technologies for weld microstructure improvement, 
residual stress control and hydrogen mitigation
• Friction stir welding can be a cost-effective construction technology

• Close interactions with other related projects on pipeline 
steel development and material property testing
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Backup Slides
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(Xu, 2005, ASTM HE Workshop, X80 steel))

Recent Evidence

• The weld region exhibit less resistance to HE than the 
baseline pipe steels
– Xu: X80 with high Ceq (0.5)
– SRNL: A106 Grade B Carbon Steel
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Valid J1c test of base metal
Invalid J1c test of weld and HAZ 
due to uneven crack front

(Xu, 2005, ASTM HE Workshop)

Complications of Inhomogeneous Weld 
Property – Inadequacy of Current Testing 
Methods



Managed by UT-Battelle
for the Department of Energy 30

Hydrogen Diffusivity Data in Literature

• Extensive data available from 
electrochemical charging at low 
gaseous pressure (< 1atm), mostly 
under “controlled” laboratory surface 
conditions

– Clean, polished surface
– Surface coating (Pd) to eliminate 

surface effects
• Very limited data for high-pressure 

gaseous hydrogen in “real-world” 
pipeline environment

– Surface effects
– Microstructure effects
– Hydrogen purity

• Literature data indicates that 
hydrogen will permeate through 
pipeline steel during long-term (>20 
years) service

Bailey et al, in Welding without 
Hydrogen Cracking



Managed by UT-Battelle
for the Department of Energy 31

What Really Happens In Permeation Test

• Several major processes operate simultaneously
– On entrance surface:

• Hydrogen molecule adsorption/trapping
• Hydrogen dissociation
• Hydrogen dissolution

– Within metal
• Hydrogen diffusion
• Hydrogen trapping

– On exit surface
• Hydrogen recombination
• Hydrogen desorption

• In order to determine hydrogen diffusion in bulk metal, the surface processes 
must be controlled and their influence on the kinetics (rate of permeation) 
must be minimized or separated
– If Jsurface<<Jbulk (i.e. rate at surface dominate), then Jmeasure=Jsurface and diffusivity of 

metal cannot be determined reliably

• Once the bulk diffusivity is understood, separate tests can be performed to 
specifically study the surface effects on hydrogen transport in metal. 

Metal / Oxide Surface

Metal Matrix

Metal / Oxide Surface

High-Pressure H2 gas

Low-Pressure H2 gas

H -H

H

H

H

H

H H

H -H
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• Basic assumptions:
– Diffusivity is independent of H concentration
– Surface processes are so fast that the 

permeation rate is control by the bulk 
diffusion process in metal

• “Effective” diffusivity is determined from the 
accumulated pressure vs time curve using 
the asymptotic slope method

• Atomic hydrogen concentration on the 
upstream surface (max concentration or 
solubility) is determined from the steady 
state permeation rate and diffusivity:

Cmax

C=0

Steel
H2 H2

Determination of “Effective” Diffusivity 
and Solubility from Permeation Test
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Permeation Curves of Pipeline Steel A106 
Grade B (Coarse Grain Heat Affected Zone)
• Multiple runs on one sample at 300psi H2 and 150°C reveals the effect of hydrogen 

trapping on diffusion
• Hydrogen traps contributes to the differences between 1st and 2nd runs

– Can be used to estimate the trapped hydrogen concentration
• Nearly identical 2nd and 3rd runs indicate high repeatability of measurement
• Same permeability at steady-state 

H trap effect
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Weld Hydrogen Embrittlement Test 
Device

Miniature notch tensile specimen

Miniature self-loading device

Pressure vessel and 
instrumentation for HE test
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