Composite Pd and Alloy Porous Stainless Steel Membranes for Hydrogen Production and Process Intensification

Yi Hua MA Center for Inorganic Membrane Studies (CIMS) Worcester Polytechnic Institute Department of Chemical Engineering May 22nd, 2009

Project ID: pd_44_ma

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- → Start : 5/7/2007
- → Finish : 5/6/2010
- → 61% Complete

Budget

→ Total Project Cost: \$ 1,602,922

- DOE Share: \$ 1,256,226
- Recipient Share: \$ 346,696

➔ Funding Received:

FY08:	\$ 442,785
FY09:	\$ 420,638

- → DOE Award #: DE-FC26-07NT43058
- DOE Project Manager: Dr. Daniel Driscoll

Subcontractor

➔ Adsorption Research Inc. (ARI)

Barriers

- ➔ Barriers Addressed:
 - Long-term selectivity stability
 - \succ H₂ flux targets
 - Mixed gas & WGS reaction studies
 - CMR modeling simulations
 - Process intensification
 - Absorbent selection and testing

Technical Targets**

	H ₂ Flux [scfh/ft ²] [§]	Temp. [°C]	ΔP max. [psi]	H ₂ Purity	Sulfur Tolerance			
2010	200	300-600	400	99.5%	20 ppm			
2015	300	250-500	800-1000	99.9%	>100 ppm			
§ @ 100 psi ΔP H ₂ partial pressure								
CO Tolerance: Yes; WGS Activity: Yes								

Project Objectives & Relevance

- Synthesis of composite Pd and Pd/alloy porous Inconel membranes for WGS shift reactors with long-term thermal, chemical and mechanical stability with special emphasis on the stability of hydrogen flux and selectivity
- Demonstration of the effectiveness and long-term stability of the WGS membrane shift reactor for the production of fuel-cell quality hydrogen
- Research and development of advanced gas clean-up technologies for sulfur removal to reduce the sulfur compounds to <2 ppm</p>
- Development of a systematic framework towards process intensification to achieve higher efficiencies and enhanced performance at a lower cost
- Rigorous analysis and characterization of the behavior of the resulting overall process system, as well as the design of reliable control and supervision/monitoring systems
- Assessment of the economic viability of the proposed intensification strategy through a comprehensive calculation of the cost of energy output and its determinants (capital cost, operation cost, fuel cost, etc.), followed by comparative studies against other existing pertinent energy technologies

Approach: Coal Gasification & CMR

Novel Catalytic Membrane Reactor (CMR):

4

Project Schedule & Milestones

Tasks		Year 1			Year 2			Year 3				
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
		Months										
		6	9	12	15	18	21	24	27	30	33	36
Gas Clean-up & Fast PSA			M1		G1							
using Structured Adsorbent						M2						
										<u>M3</u>		
Membrane Synthesis		M4										
				M5				G2				
Membrane Characterization & Reactor Performance						M6						
										M7		
Membrane Reactor Modeling			M8									
Process Intensification					M9							
Process Control System;								M10				
Design & Implementation												
Process Monitoring System; Design & Implementation										M11		
Program Management & Reporting												

Membrane Properties & Permeation Test Set-up

> Membrane:

Pd supported on porous Inconel (media grade 0.1 μm)

- Method of Preparation: Electroless Plating
- Geometry:

Tubular (Plated on the outside of a tube)

➢ Membrane Area ≈ 25 cm²

Long-Term Selectivity Stability

> Excellent long-term H₂/He selectivity stability was achieved over a total testing period of ~3550 hours (>147 days).

➢ High pressure flux measurements of the membrane 029 (7.6 µm thick pure-Pd/Inconel) at ~400 & 450°C and at a ΔP of ~100 psi (P_{High}=115 psia & P_{Low}=15 psia), led to a H₂ flux of ~150 & 166 scfh/ft², respectively, with essentially infinite ideal H₂/He selectivity.

Reproducibility of the Long-Term Selectivity Stability

> The excellent H₂/He selectivity stability of the membrane 029 over the temperature range of 300-450°C, was successfully re-produced with the membrane 031 (7 μ m thick pure-Pd/Inconel).

> At ~450°C and at a ΔP of 15 psi (P_{High}=30 psia & P_{Low}=15 psia), the H₂ flux and the final H₂/He selectivity were ~26.6 scfh/ft² & ~4500, respectively, after a total testing period of ~2200 hours (>90 days).

* At ~500 hours (450 °C) the sudden change in the leak profile was due to a defect formed and/or present during the synthesis, which was not cured completely and did not contribute to any further leak growth.

Progress Towards DOE H₂ Flux Targets

> At 442°C & at a ΔP of 100 psi (P_{High}=115 psia & P_{Low}=15 psia), the H₂ flux of the 3-5 μ m thick Pd/Inconel membrane 032 was as high as ~359 scfh/ft² at the end of ~285 hours of testing with H₂/He selectivity of ~450, which exceeded the DOE's 2010 and 2015 H₂ flux targets.

Mixed Gas Testing* of Membrane 0297.6 µm Pd

10

Mixed Gas Testing^{*} of Membrane 029_{7.6 µm Pd}

> Compared to the pure H_2 flux, the lowering of the H_2 flux for the mixed gas testing was primarily due to the changes in the H_2 partial pressure along the length of the reactor caused by the removal of H_2 at a high permeation rate.

* 61.7% H₂, 37.1% CO₂ & 1.2% CO

** H₂ only, no other gases detected in the permeate

H₂ partial pressure at the retentate exit is based on the GC analysis

Mixed Gas Testing^{**} of Membrane 029_{7.6 µm Pd} with Steam

** 50.1% H₂, 30.1% CO₂, 18.8% H₂O & 1.0% CO

Mixed Gas Testing^{**} of Membrane 029_{7.6 µm Pd} with Steam

Factors affecting hydrogen flux under mixed-gas testing conditions:

> Dilution of H_2 concentration on the feed side due to the presence of other gases

> The change of H_2 partial pressure due to the in-situ removal of H_2 along the length of the membrane module

Gas phase mass transfer limitations due to the formation of a concentration boundary layer (Concentration polarization)

Competitive adsorption of other gas components on the membrane surface

** 50.1% H₂, 30.1% CO₂, 18.8% H₂O & 1.0% CO

WGS Reaction in a Pd-based* CMR

CO conversion vs. time is shown for both a membrane reactor (red) (*Membrane 0.1-AA-2: 12.5 m Pd) and a packed bed reactor (blue) fed with the conditions listed in the table

Estimated equilibrium conversion for the conditions listed is shown in green

> The feed consisted of CO and H_2O

The membrane reactor had a tube-side pressure of 14.5 psia, H_2 recovery was 89.9%

The packed bed reactor contained a stainless steal tube with the same dimensions as the membrane

CMR Modeling of the MSR* Reaction w/ Process Intensification Analysis

- The superior performance of the CMRs over that of conventional PBRs was amply demonstrated over a wide range of operating conditions.
- ► Impact of operating conditions on the CMR performance was successfully simulated & targeting analysis was utilized to optimize and evaluate the best performance range via the proposed process intensification indicator Δindex. ($\Delta = X_{CH_4,MR} - X_{CH_4,PBR}$)

¹⁵ Technical Accomplishments

* MSR: Methane Steam Reforming

CMR Modeling of the WGS* Reaction w/ Process Intensification Analysis

> At 400°C and 60 bar the total CO conversion, X_{CO} , simulated for the CMR and the PBR were 99.9 and 88.9%, respectively. As the driving force for the H₂ permeation increased with the higher pressure on the reaction side, the in-situ removal of the high partial pressure H₂ resulted in an enhancement of the X_{CO} in the case of Pd-based CMR over the entire temperature range. > In contrast to conventional reactors operated under excess steam-to-CO ratios, the Δ -index analysis showed that the CMR operation below m<2, can further improve the CO conversion of the WGS reaction by ~13%, provided that the coke formation was avoided by utilizing a highly active & selective catalyst for WGS reaction.

 $\left(\Delta = X_{COMR} - X_{COPBR}\right)$

¹⁶ Technical Accomplishments

* WGS: Water-Gas Shif

Collaborations

Adsorption Research Inc. (ARI); sub

(Through telephone conversations and quarterly report to the prime)

- ARI completed adsorption selection & property measurement for Zeolite 5A, Zeolite 13X, NaY and Hisiv3000
- The equilibrium isotherms of the adsorbents 5A, 13X, NaY and Hisiv3000 were measured at 200 and 230°C for CO₂, COS and H₂S and the equilibrium data were fitted using the Langmuir equation. The eq^m isotherms at 200 and 230°C were also measured for the water vapor.
- To evaluate both short-time and longtime diffusion behavior of the adsorbents 5A, 13X, NaY and Hisiv 3000, transient uptake tests for CO₂, COS and H₂S were conducted at 200 & 230°C.

Adsorption Results @ 200°C H₂S Isotherms

The development of the pressure swing adsorption (PSA) system and the demonstration of a suitable adsorbent in cyclic operation at 200°C & 200 psia is underway.

Proposed Future Work (FY09 & FY10)

- Continue WGS reaction and mixed gas testing studies
- Complete 2010 technical target screening and qualification tests* phase 1 and phase 2
- Synthesis of thin separation layers to achieve higher H₂ flux using support with minimum mass transfer resistance
- > Continue Pd/Au alloying studies to improve H_2 flux
- Conduct long-term sulfur poisoning & recovery experiments
- Further refinement & improvement of the CMR model (i.e., 2-D non-isothermal finite element modeling via the Comsol Multiphysics)
- Continue process intensification & performance assessment analyses coupled with process control strategies
- Initiate economical analysis for the proposed process intensification framework
- Complete building & testing of a Pressure Swing Adsorption (PSA) system (sub: ARI)

Project Summary

- Achieved excellent long-term H₂/He selectivity stability of essentially infinite over a total testing period of ~3550 hours (>147 days) at 300-450°C & at a ΔP of 15-100 psi (P_{Low}=15 psia), with membrane 029_{7.6 µm Pd/Inconel}
- > Achieved re-producible long-term H₂/He selectivity stability (~2200 hours, >90 days) with membrane $031_{7 \mu m Pd/Inconel}$ at T = 300-450°C.
- Flux of ~359 scfh/ft², which exceeded the DOE's 2010 and 2015 H₂ flux targets [Membrane 032_{3-5 μm Pd/Inconel} @ T=442°C & ΔP of 100 psi (with P_{Low}=15 psia)].
- Initiated mixed gas experiments (61.7% H₂, 37.1% CO₂ & 1.2% CO w/ or w/o 19% Steam) using membrane 029_{7.6 μm Pd} at 400°C & ΔP=100-200 psi (with P_{Low}=15 psia).
- Achieved 99% total CO conversion and 89.9% H₂ recovery in a 12.5 μm thick Pd-based CMR operated at ~350°C, ΔP=200 psi (P_{Low}=15 psia) H₂O/CO=1.44 and GHSV_{stp}=150 h⁻¹. Under similar conditions, X_{CO,PBR} & X_{CO,Eqm} were 92.7% & 93.4%, respectively.
- Successfully completed MSR & WGS reaction modeling studies and initiated process intensification analysis.
- Completed property & isotherm measurements for the selected adsorbents and initiated PSA system construction.

Project Summary Table

	DOE T	argets§	Current WPI Membranes							
	2010	2015	#025R	#027	#029	#031	#032			
Flux [scfh/ft ²]	200	300	65.9	36.1	166	26.6	359			
∆P (psi) H ₂ partial pressure (P _{Low} =15 psia)	100*	100*	15	15 100		15	100			
Temperature [°C]	300-600	250-500	400	400	450	450	442			
H ₂ /He Selectivity	n/a	n/a	~220	~120	8	~4500	~450			
Total Test Duration [hours]	n/a	n/a	1015	~1250	~4500	~2200	~523			
Thickness [µm]	n/a	n/a	4.2 Pd	6.2 Pd/Au _{5 wt%}	7.6 Pd	7.0 Pd	3-5 Pd			
WGS Activity	Yes	Yes	Not tested	Not tested	Not tested	Not tested	Not tested			
CO Tolerance	Yes	Yes	Not tested	Not tested	Yes	Not tested	Not tested			
S Tolerance [ppm]	20	>100	Not tested	Not tested	Not tested	Not tested	Not tested			
H ₂ Purity	99.5%	99.99%	99.0%	99.5%	≥99.999%	99.98%	99.8%			
∆P Operating Capability (Max. System Pressure, psi)	400	800-1000	15**	15**	225**	15**	100**			

§ DOE-NETL Test Protocol v7 - 05/10/2008

* Standard conditions are 150 psia hydrogen feed pressure and 50 psia hydrogen sweep pressure;

** Maximum pressure tested, however, the ∆P can be higher since previous WPI membranes were tested up to 600 psi under MSR reaction conditions

