

NATIONAL ENERGY TECHNOLOGY LABORATORY

Development of Robust Metal Membranes for Hydrogen Separation

Dr. Bryan D. Morreale Reaction Chemistry & Engineering Research Group Leader Office of Research & Development, NETL

2009 DOE Hydrogen Program Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Reaction Chemistry & Engineering Group Members

U.S. DOE - NETL

Dr. Bryan Morreale Dr. Bret Howard Dr. Dirk Link Dr. Charles Taylor

NETL Research Faculty

Dr. Andrew Gellman, CMU Dr. James Miller, CMU Dr. Robert Enick, PITT Dr. Goetz Vesser, PITT Dr. Sittichai Natesakhawat, PITT

NETL Site Support Contractors

Dr. Mike Ciocco, Parsons Dr. Sonia Hammache, Parsons Paul Zandhuis, Parsons Nick Means, Parsons Technical staff, Parsons

Overview

Timeline

Project start date: 10/1/2008Project end date: 9/30/2009Percent complete: 67%

Budget

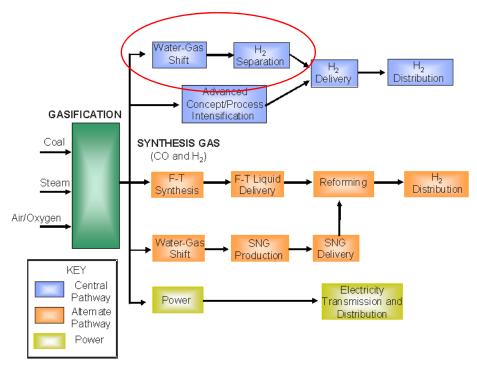
•FY09 Funding: \$746k•FY08 Funding: \$1,000k•FY07 Funding: \$1,230k

Barriers⁽¹⁾

- (G) H₂ Embrittlement
- (H) Thermal cycling
- (I) Poisoning of catalytic surface
- (J) Loss of structural integrity and performance

Partners

- Carnegie Mellon University
- University of Pittsburgh
- Gas Technology Institute
- REB Research
- Los Alamos National Lab.
- NETL Computational Chemistry


NATIONAL ENERGY TECHNOLOGY LABORATORY

⁽¹⁾ 2008 Hydrogen from Coal Program: Research, Development and Demonstration Plan

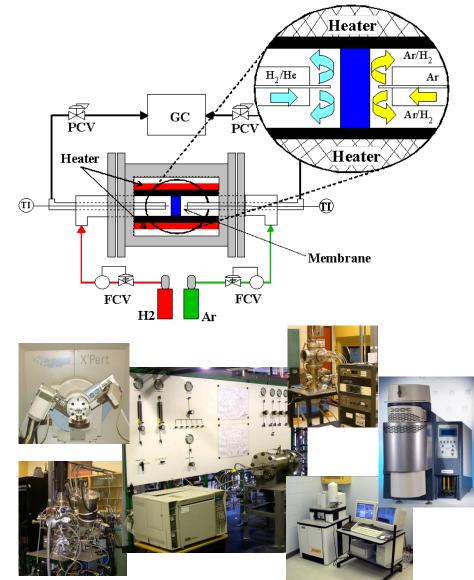
Background (Relevance)

Overall goal

- Development of robust dense metal, hydrogen separation membranes for integration into coal conversion processes
- Studies suggest that incorporating separation membranes into coal conversion processes can reduce costs by...

Facilities & Capabilities

Reactor Systems


- Reactor and separation configurations
 - Continuous or batch
- Major and minor syngas constituents
- T to 1000°C, P to 1000 psi

Fabrication Lab

- Depositions chamber
- Vacuum arc-melter
- Micro-welder
- High-T box and annealing ovens

Characterization Instruments

- UHV chambers
 - Gradient doser, AES, XPS, LEIS, TPD, PVD
- XRD w/hot-stage
- SEM w/EDS
- TGA for use with H_2S

Outline

Task 1: H₂ Membrane Test Protocol Task 2: PdCu System Task 3: Robust Metal Membrane Development

- Objective
- Approach
- Technical Accomplishments
- Collaborations
- Proposed Future Work

Task 1: H₂ Membrane Test Protocol

Objective

- Define a H₂-membrane test protocol that
 - will advance the technology towards application to coal conversion processes
 - is consistent with overall FE program metrics, and
 - yields a basis for an "applesto-apples" comparison

Approach

 Apply understanding of engineering principles, membrane technology and coal conversion processes to define a sequential protocol

Performance Criteria	Units	2007 Target	2010 Target	2015 Target
Flux ^(a)	sccm/cm ²	51	102	1 52.4
Temperature	°C	400-700	300–600	250-500
S Tolerance	ppmv		20	>100
Cost	\$/ft ²	150	100	<100
WGS Activity	-	Yes	Yes	Yes
? P Operating Cap ability ^(b)	psi	100	Up to 400	Up to 800 to 1,000
Carbon Monoxide Tolerance	-	Yes	Yes	Yes
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

^a For 100 psi ΔP (hydrogen partial pressure basis)

 ${}^{\mathrm{b}} \Delta P$ = total pressure differential across the membrane reactor

Task 1: H₂ Membrane Test Protocol (Technical Accomplishments)

•Completed a survey to determine the effluent composition of a WGS unit

•Developed COMSOL model to predict the influence of WGS reaction and/or H₂ removal on overall gas composition

•Identified the test conditions and gas compositions that are relevant to syngas conversion flowsheet options:

- <u>Test 1</u>: Shifted syngas, with no sulfur
- <u>Test 2a</u>: Shifted syngas with 20ppm H_2S
- <u>Test 2b</u>: Shifted syngas with
 - \sim 50% H₂ removal
 - <u>Test 2c</u>: Shifted syngas with ~90% H₂ removal

Task 1: H₂ Membrane Test Protocol (Collaborations)

NETL Technology Manager and Technology Team

 The development of the test protocol was a team effort consisting of several participants of the Technology Team

NETL funded H₂ Separation Projects

- Provide unbiased performance verification testing
 - REB Research
 - ORNL
 - Eltron Research
 - WRI

Task 1: H₂ Membrane Test Protocol (Proposed Future Work)

- Continue to support the development of test protocols to include more "commercially relevant" conditions
 - Higher transmembrane pressure differentials
 - Contaminants other than H₂S
 - For example, CI and N for biomass co-feed
 - Integration of WGS reactor and Membrane separator
 - (WGSMR)

Task 2: PdCu System

Objective

 Complete a comprehensive performance evaluation of the PdCu system at conditions consistent with coal conversion processes

•The intent of the study is to

- gain a fundamental understanding of the PdCu system
- address discrepancies observed in literature
- develop property-performance relationships
- provide design guidance for fabrication of membranes at commercial scales and thicknesses

Performance Criteria	Units	2007 Target	2010 Target	2015 Target
Flux ^(a)	sccm/cm ²	51	102	152.4
Temperature	°C	400–700	300–600	250-500
S Toleran ce	ppmv		20	>100
Cost	\$/ft ²	150	100	<100
WGS Activity	-	Yes	Yes	Yes
?P Operating Capability ^(b)	psi	100	Up to 400	Up to 800 to 1,000
Carbon Monoxide Tolerance	-	Yes	Yes	Yes
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

^a For 100 psi ΔP (hydrogen partial pressure basis)

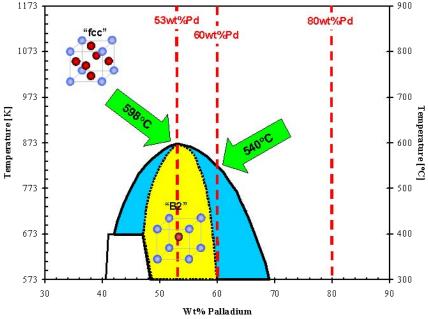
^b ΔP = total pressure differential across the membrane reactor

Task 2: PdCu System (Approach)

Utilize several PdCu compositions

 100, 80, 60, 53wt%Pd-Cu
Fabricated by "cold rolling" techniques

•Membrane thickness was generally ~100μm

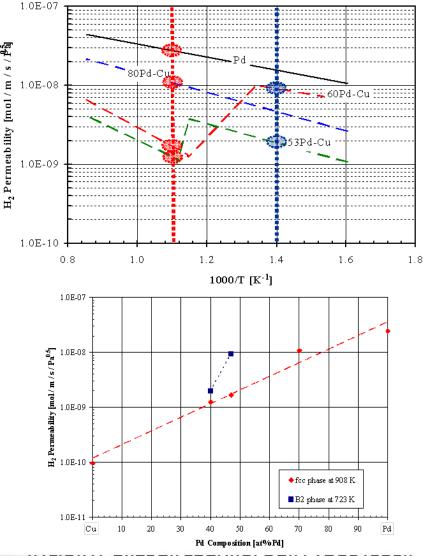

 Ease of operation and minimize failures

•Temperatures consistent with post gasification and allowed variation in crystalline structure

350, 450 and 635°C

Sour gas studies

- 8hrs in clean 10%He-H₂ (baseline)
- 120hrs in 0.1%H₂S-10%He-H₂

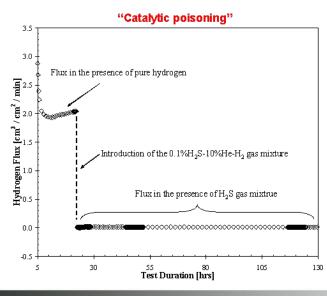


Subramanian, Laughlin, Binary Alloy Phase Diagrams, Second Ed., ASM International, (1990) 1454-1456.

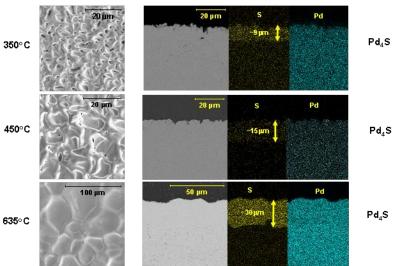
Task 2: PdCu System (Technical Accomplishments)

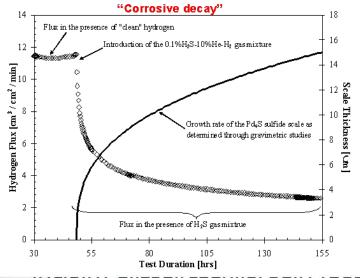
•Completed evaluation of hydrogen permeability of Pd and PdCu

- 60Pd-Cu exhibits the highest permeability at temperatures below ~500°C, corresponding to a B2 crystalline structure.
- 80Pd-Cu exhibits the highest permeability at temperatures above ~500°C, corresponding to a fcc crystalline structure.
- In general, Pd-Cu permeability increases with increasing Pd content.



Task 2: PdCu System


(Technical Accomplishments)

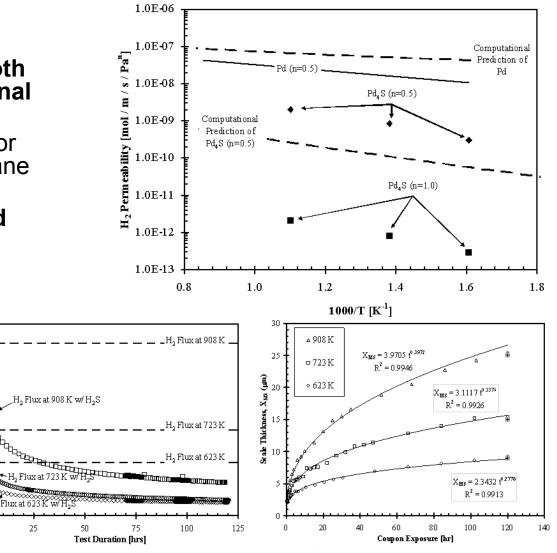

•Completed evaluation of Pd and PdCu alloys in presence of H_2S

- <u>Catalytic poisoning:</u> Immediate decrease: no significant surface scale
 - 60Pd-Cu, 53Pd-Cu
- <u>Corrosive decay:</u> Gradual decrease: significant surface scale
 - Pd, 80Pd-Cu
- No change in performance upon the introduction of H_2S : no surface scale.
 - 80Pd-Cu, 60Pd-Cu, 53Pd-Cu at T>450°C

14

Task 2: PdCu System

(Technical Accomplishments)


•Reported the first ever permeability of Pd₄S using both experimental and computational techniques

 Approach can be used for developing new membrane systems

30

 Pd₄S permeability is ~1/10 Pd permeability

15

Task 2: PdCu System (Collaborations)

- The research team conducting the work on the PdCu system consisted of participants from local universities
 - University of Pittsburgh
 - Provided technical support
 - Performance testing of the membranes
 - Membrane characterization
 - Georgia Institute of Technology
 - Utilized computational method to predict the first reported permeability of palladium-sulfide

Task 2: PdCu System (Proposed Future Work)

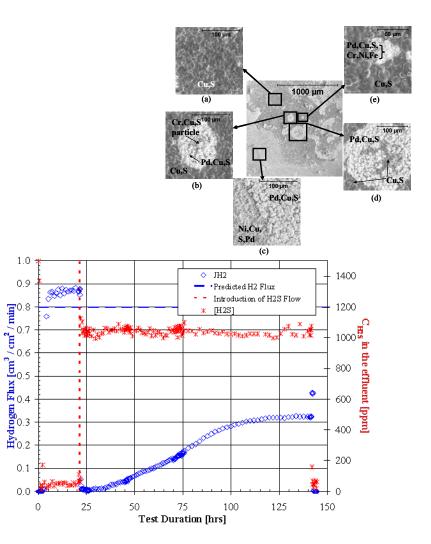
- Characterization of the PdCu system in clean and H₂S-contaminated environments has been successfully completed
- No additional work specific to PdCu is planned
- The results of our work with PdCu will help set the direction of future Robust Metal Membrane Development (Task 3):
 - how to think about and characterize interaction of sulfur with multicomponent materials, like alloys
 - alloys' contribution to corrosion resistance
 - the role of minor components in imparting sulfur tolerance to metal membrane systems

Task 3: Robust Metal Membrane Development

•Identify membrane compositions and configurations that meet the criteria outlined in FE H₂ from Coal RD&D plan per the NETL Membrane Test Protocol

 Provide design guidance to collaborators who will fabricate membranes at commercial scales and thicknesses

Performance Criteria	Units	2007 Target	2010 Target	2015 Target
Flux ^(a)	sccm/cm ²	51	102	152.4
Temperature	°C	400–700	300–600	250–500
S Tolerance	ppmv		20	>100
Cost	\$/ft ²	150	100	<100
WGS Activity	-	Yes	Yes	Yes
?P Operatin g Cap ab ility ^(b)	psi	100	Up to 400	Up to 800 to 1,000
Carbon Monoxide Tolerance	-	Yes	Yes	Yes
Hydrogen Purity	%	95%	99.5%	99.99%
Stability/Durability	years	1	3	5

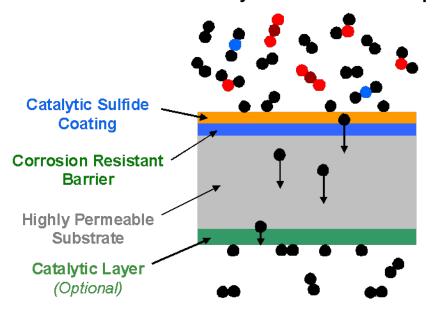

^a For 100 psi ΔP (hydrogen partial pressure basis)

^b ΔP = total pressure differential across the membrane reactor

Task 3: Robust Metal Membrane Development (Approach)

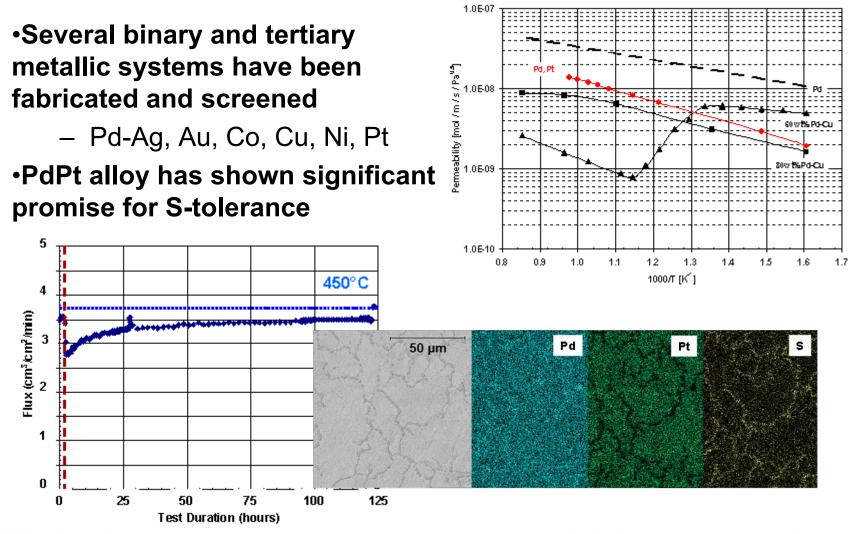
- Building on the PdCu foundation, apply fundamental and applied science to engineer membrane alloys and composites suitable for coal conversion processes
 - Corrosion resistance
 - fundamental thermodynamics,
 - gravimetric analysis
 - Surface activity
 - H₂/D₂ exchange
 - computational studies
 - H₂-transport

Task 3: Robust Metal Membrane Development


(Technical Accomplishments)

•Provisional Patent Filed: "Sulfur Induced H₂-Membrane"

- Concept: Use B2-structured Pd-Cu alloy as sulfide corrosion barrier in multilayered membrane structure
- Utilize "S-based surface catalyst" to provide atomic hydrogen for transport


New capabilities developed

- preparation and characterization of H-atom transport through multi-layer structures in UHV
- preparation and characterization of catalyticsulfide top-layers for multilayer structures

Multi-layer Membrane Concept

Task 3: Robust Metal Membrane Development (Technical Accomplishments)

Task 3: Robust Metal Membrane Development (Collaborations)

- The research team conducting the work on the task consisted of participants from institutions
 - Carnegie Mellon University
 - Provided technical support
 - Assisted performance testing of the membranes
 - Utilize UHV techniques to evaluate the energetics associated with H₂ activation on metal and sulfide surfaces.
 - NETL Computational Research Group
 - Provide fundamental computational studies evaluating the energetics associated with H₂ activation on metal and sulfide surfaces.

Task 3: Robust Metal Membrane Development (Proposed Future Work)

- Characterize H-atom transport across interfaces buried within multi-layer structures
- Develop options for sulfur-resistant top-layers and corrosionresistant intermediate layers for layered structures
- Continue evaluation of binary and higher alloys for use alone or as functional layers in multi-component structures
- Provide design input to partners who fabricate membranes for practical implementation

Summary

- A test protocol has been developed that allows technological progression and comparisons for application to coal conversion processes
- A comprehensive study of the PdCu system has been completed
 - Conditions of complete S-tolerance have been identified.
 - Corrosion/catalytic phenomena has been identified and will be used for further membrane development
- Several alloy compositions have been fabricated and screened for performance
 - Some alloys have shown potential for S-tolerance

