Scale-Up of Hydrogen Transport Membranes for IGCC and FutureGen Plants

Doug Jack Eltron Research & Development Inc. May 22, 2009

PD_46_Jack

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

\$ 1,085

\$ 1,625

\$ 1,300

\$ 325

\$ 1,875

\$ 1,500

\$ 375

\$40,000

\$31,000

\$ 9,000

Timeline

- Phase I Start 1 Oct 2005
- Phase II Start 1 Oct 2009
- Phase II End 30 Jun 2013

Budget (\$000)

- Phase I Funding \$ 5,415
 - DOE share \$4,330
 - Contractor share
- Funding in FY08
 - DOE share
 - Contractor share
- Funding for FY09
 - DOE share
 - Contractor share
- Phase II Funding
 - DOE Share
 - Contractor share

Barriers Addressed

- Reducing hydrogen cost
- Hydrogen production from diverse pathways
- Hydrogen of sufficient purity for fuel cells

Partners

- Project lead: Eltron R&D
- Interactions: 4 membrane
 manufacturers
- Collaborations: 2 industrial chemical producers

DOE Project Manager – Arun Bose DOE Contract DE-FC26-05NT42469

Program Objectives

- Develop H₂/CO₂ Separation System, which
 - Retains CO₂ at coal gasifier pressures
 - Operates near water-gas shift conditions
 - Tolerates reasonably achievable levels of coalderived impurities
 - Delivers pure H₂ for use in fuel cells, gas turbines, and hydrocarbon processing
 - Is cost effective compared to alternative technologies for carbon capture

Approach

- Materials Development
 - Examine membrane and catalyst compositions
 - Develop preparation techniques
- Performance Screening
 - Evaluate flux, life, impurities effects using WGS composition
 - Establish range of operating conditions
- Mechanical Design
 - Assess strength of materials, embrittlement, welding techniques, et al
 - Address manufacturing costs and maintenance issues
- Process Design and Economics
 - Integrate into IGCC flow sheets with and without co-production of $\rm H_2$ & power
 - Determine methods for impurity management
 - Compare process economics versus other technologies
- Scale-up steps
 - 1.5 lbs/day H_2 production lab scale using simulated gas compositions
 - 220 lbs/day H_2 production using coal-based SG slipstream
 - 4 tons/day H₂ production complete engineering data package
 - Commercial module expected to be ~ 35 TPD H_2 Production

Approach - Milestones

	Milestone		
FY08 Q3	Select feed catalyst composition for impurity testing Status: Completed		
FY08 Q4	Update process flow sheet and demonstrate improved economics utilizing HTM in coal-based IGCC plants. Status: Completed		
FY09 Q1	Complete initial testing of membranes in H ₂ S contaminated syngas and complete initial life cycle testing of membranes with runs sufficiently long to allow an engineering assessment. Status: Completed		
FY09 Q2	Develop a preliminary design basis for the PDU. Status: Completed		
FY09 Q3	Procure membrane materials prepared by different manufacturers and processes for testing and evaluation Status: In progress		
FY09 Q4	Select the preferred manufacturing process and catalyst deposition technique for scale-up in PDU. Status: In progress		

Technical Accomplishments and Progress

- 10 high flux alloys manufactured and tested at high differential pressures. One alloy down-selected for future testing.
- 2. Catalyst Development
 - H₂S
 - CO
 - Catalyst down-selected
- 3. Lifetime testing / stability
- 4. Manufacturing
- 5. Engineering

Technical Accomplishments and Progress 1 - Substrate

Technical Accomplishments and Progress 2 - Catalyst

Technical Accomplishments and Progress 3 - Lifetime Testing

- 2 Reactors
- Completed 10 tests between 600 and 1300 hours
- 340°C
- ∆P = 400 psig

Technical Accomplishments and Progress 4 – Manufacturing Collaborations

- Membrane Substrate Manufacturing

 Four Manufacturers
- Membrane Catalyst Deposition
 - Evaluating 5 different techniques internally and externally with collaborator
- Assembly
 - Weld testing with collaborator

Technical Accomplishments and Progress 5 - Engineering

- H₂ Transport Resistance Model
 Parameters developed
 - Tool for interpreting system differences
- PDU Design Basis Developed
 - Specific to membrane scale-up
 - Site factors to be determined
- Process Economics Updated

Economic Results Summary

Pre-combustion Gas Cleaning & CO_2 Capture Method	2-Stage Selexol	Cold Gas Cleaning & Eltron Membrane	Warm Gas Cleaning & Eltron Membrane	Improvement
Thermal Efficiency	27.4%	32.0%	33.6%	6.2%
% CO ₂ Captured	90%	90%	95%	5.0%
Cost of Electricity (\$/MWh)	115.5	114.5	106	9.5

Future Work

- Focus near term on scale-up work with commercial suppliers on manufacturing of full-size alloy membranes
- Perform life testing on new materials as required
- Understand impacts of contaminants
- Maintain and improve techno-economic models
- Design, build & operate 220 lb/day PDU 2010+ Goal

Progress Towards DOE FutureGen Targets

Performance Criteria	2010 Target	2015 Target	Current Eltron Membrane
Flux, SCFH/ ft ²	200	300	450
Operating Temperature, °C	300-600	250-500	250-440
Sulfur Tolerance (ppmv)	2	20	20 (prelim.)
System Cost (\$/ft ²)	500	<250	<200
ΔP Operating Capability (psi)	400	800-1000	1,000
Carbon monoxide tolerance	Yes	Yes	Yes
Hydrogen Purity (%)	99.5	99.99	>99.99
Stability/Durability (years)	3	>5	0.9
Permeate Pressure (psi)	N/A	N/A	400

Summary

- Results demonstrate that technology is on track to meet DOE targets
 - Technical
 - Economics
- Tools are in place
 - Experimental
 - Modeling at all scales
- Flexibility in process design, including
 - Staged hydrogen recovery for polygen cases
 - Integrated water gas shift membrane reactors

Supplemental Slides

CO₂ Capture with Eltron H₂ Separation Membrane & Warm Gas Cleaning

