Experimental Demonstration of Advanced Palladium Membrane Separators for Central High-Purity Hydrogen Production

S.C. Emerson, J.T. Costello, Z. Dardas, T. Hale, R.R. Hebert, G.C. Marigliani, S.M. Opalka, Y. She, T.H. Vanderspurt, & R. Willigan United Technologies Research Center 22 May 2009

Project ID #PD_48_Emerson

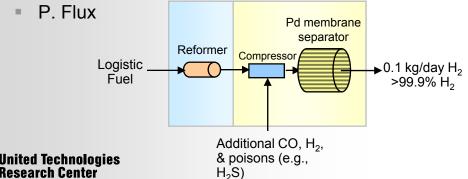
This document does not contain any proprietary, confidential, or otherwise restricted information.

Overview & Objectives (Relevance)

Timeline

- 6/15/07 to 6/14/09
- 88% complete

Budget


- \$1497k (\$1198k from DOE)
- FY08 funding: \$535k
- FY09 funding: \$163k

Partners

- Power+Energy
 - Membrane separator fabrication
- Metal Hydride Technologies
 - H₂ solubility measurements

Barriers

- K. Durability
- L. Impurities
- N. Hydrogen Selectivity

Objectives

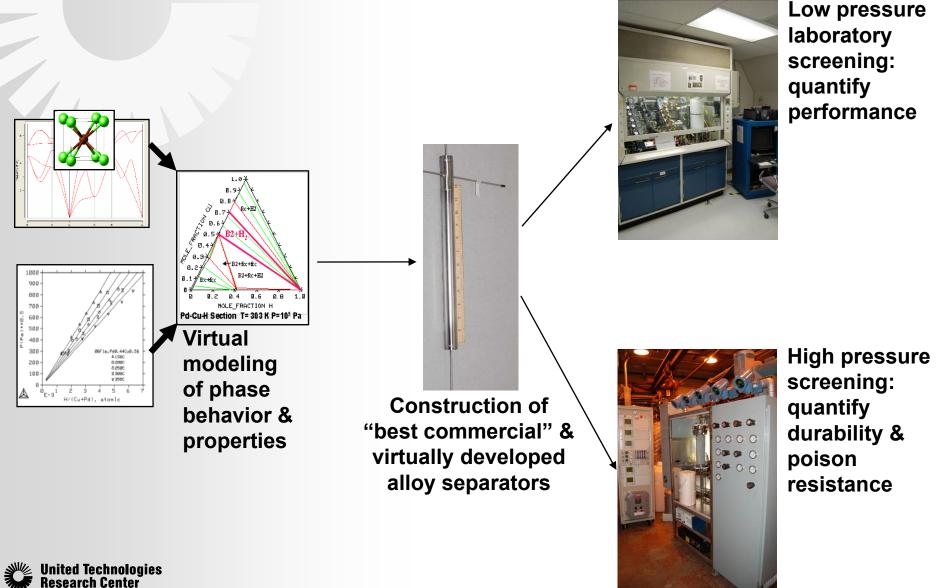
- Confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia
- Develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m³m⁻²atm^{-0.5}h⁻¹ at 400 °C and capable of operating at pressures of 12.1 MPa (~120 atm, 1750 psia)
- Construct and experimentally validate the performance of 0.1 kg/day H₂ PdCu trimetallic alloy
 ¹² membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H₂S, NH₃, and HCI

DE-FC26-07NT43055 Project Status Scorecard (Relevance)

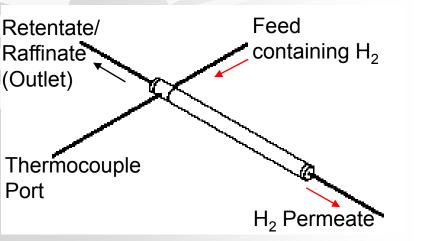
P+E & UTRC alloy separators can meet or exceed DOE targets

Metric	2012 DOE Target	Current Project Status	Notes		
Hydrogen Flux	200 ft ³ ft ⁻² h ⁻¹	61 ft ³ ft ⁻² h ⁻¹ (P+E alloy) 200 ft ³ ft ⁻² h ⁻¹ (UTRC alloy prediction)	 P+E alloy at 600 °C; 100 psig H₂ UTRC alloy predicted to be 200 ft³ft⁻²h⁻¹ by atomistic modeling at ≈475 °C with current tube thicknesses 		
Temperature	300–600 °C	350–600 °C	• UTRC ternary alloy limited to 475 °C		
Sulfur tolerance	20 ppmv	78 ppmv H₂S (P+E alloy) 9 ppmv NH ₃ (P+E alloy)	 Demonstrated with P+E alloy at 450 °C Demonstrated 487±4 ppmv for 4 hours Demonstrated 9 ppmv NH₃ for 175 hours 		
∆P operating capability	Up to 400 psi ΔP	290 psig	 Facilities & current separator design limited to 20.7 atm (290 psig) testing 		
CO tolerance	Yes	Yes	 Demonstrated up to 13.3% CO at 90 psia total pressure; >9% CO at 304.7 psia 		
Hydrogen purity	99.5%	99.9999%	 P+E manufacturing design and manufacturing ensures no leaks CO < 1 ppm, S < 15 ppbv desired for fuel cell applications 		

Milestone Schedule (Approach)


Project is on track to meet milestones; effort focused on Tasks 3 & 5

Task	Project Milestone	Planned Start	Planned End	Percent
#		Date	Date	Complete
1	Complete initial technical and economic modeling.	June 15, 2007	Dec. 31, 2007	100%
2	Complete advanced membrane property simulations by atomistic and thermodynamic modeling calculations.	June 15, 2007	Dec. 31, 2007	100%
3	Complete the design and construction of membrane separators using sulfur resistant palladium alloy and membrane separators using PdCuTM.	June 15, 2007	May 30, 2008	83%
4	Complete hydrogen solubility tests using various alloys for six-to-twelve separators, and predict hydrogen permeability performance.	Mar. 15, 2008	June 30, 2008	100%
5.2	Complete testing of "best of class" separators.	Mar. 15, 2008	Sep. 30, 2008	50%
5.3	Complete evaluation of advanced PdCuTM separator units.	June 15, 2008	April 30, 2009	50%
6	Complete the revised technical and economic modeling.	Dec. 1, 2008	June 1, 2009	0%



Technical Approach

Experimental verification of commercial fcc & novel bcc-stabilized PdCu alloys

Power+Energy Membrane Separators (Approach)

- Robust, scalable commercial design
- Design minimizes external mass transfer resistances
- Tubular design allows for membrane growth & leak free sealing

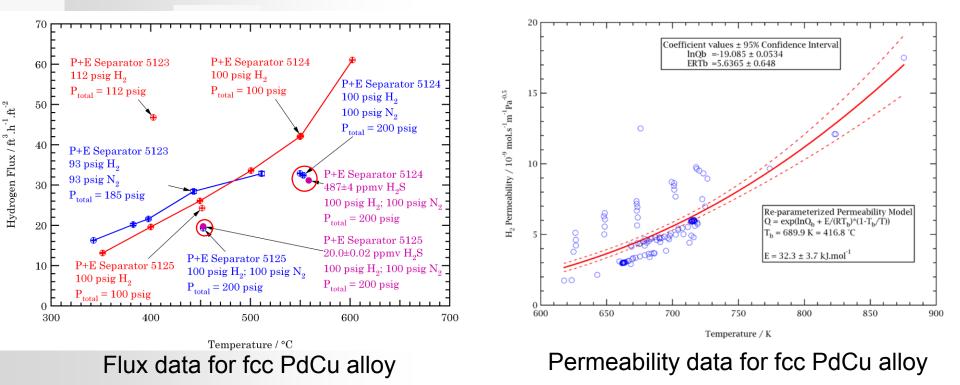
Hydrogen Separation Module delivered to US Navy for Logistic Fuels Processing for 50 kW Fuel Cell Demonstration

Second Generation membrane assembly incorporates sulfur tolerant membranes

P+E performs 100% inspection and testing of incoming membranes in its Automated Testing and Inspection Area

Next generation PE9000S Hydrogen Purifiers incorporating P+E microchannel membranes

Each 24" unit has a capacity of 1370 slpm


Technical: Membrane Separator Testing

Task 5 Summary

- Logistic fuel reformer test stand completed (high pressure test rig)
 - More difficult than expected to integrate rig components
 - Necessary to avoid prohibitive costs of gas cylinders & enable testing with "real" reformate gases for durability testing
- Tests of fcc PdCu alloy performed at high pressure
 - Demonstrated flux of 61 scfh/ft² with 100 psig H₂
 - Pressures of 290 psig with high temperatures can result in failures of membrane tubes with defects
- Achieved DOE sulfur target
 - 26 scfh/ft² stable flux with 20 ppmv H₂S at 200 psig (100 psig H₂), 450 °C
 - Operated >100 h with 33–78 ppmv H₂S with no loss in flux
- Next six months of project focused on durability testing
 - Evaluate separators for durability in the presence of H₂S, NH₃, and HCI
 - Demonstrate 500-2000 h durability

Technical: Summary of fcc PdCu Performance

Best expt. flux of 61 ft³ft⁻²h⁻¹at current thickness; membranes H₂S resistant

- Best measured flux of 61 scfh/ft² on pure H_2
- Flux with >20 ppmv H_2S identical to sulfur free flux
- Some variation in separator performance
- Furnace temperatures of 400 °C–770 °C and 290 psig result in defective tube failures (lowering pressure to 250 psig mitigates failure)

Technical: Revised Model of Species Effect on fcc PdCu

Reversible adsorption of gases: $H_2S >> CO > CO_2$, N_2 , H_2O

 $Q_{\text{eff}} = \frac{Q_{H_2}}{1 + K_{CO}p_{CO} + K_{CO_2}p_{CO_2} + K_{H_2O}p_{H_2O} + K_{N_2}p_{N_2} + K_{H_2S}p_{H_2S}}$

$$Q_{H_2} = \exp\left(-19.085 + 5.6365\left(1 - \frac{689.9 \text{ K}}{T}\right)\right) = 1.4434 \times 10^{-6} \exp\left(\frac{-32330}{RT}\right)$$

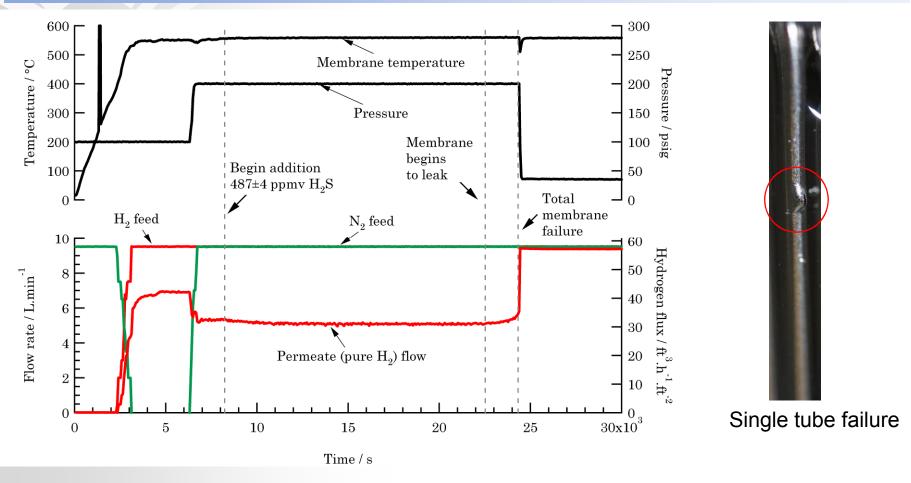
$$K_{CO} = \exp\left((-12.748 \pm 1.008) + \ln\frac{T}{689.9 \text{ K}}\right) = 4.22 \times 10^{-9} T$$

$$K_{CO_2} = \exp\left((-15.107 \pm 2.340) + \ln\frac{T}{689.9 \text{ K}}\right) = 3.98 \times 10^{-10} T$$

$$K_{N_2} = \exp\left((-14.859 \pm 1.046) + \ln\frac{T}{689.9 \text{ K}}\right) = 5.11 \times 10^{-10} T$$

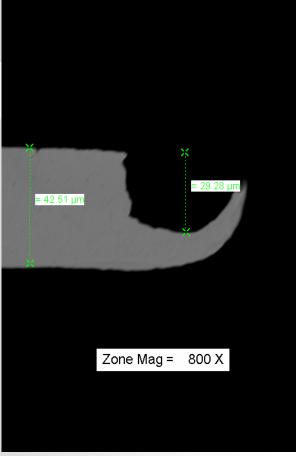
$$K_{H_2O} = \exp\left((-15.386 \pm 1.531) + \ln\frac{T}{689.9 \text{ K}}\right) = 3.01 \times 10^{-10} T$$

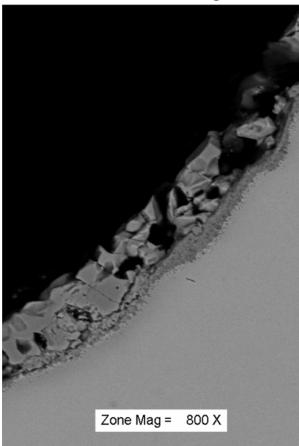
$$K_{H_2S} = \exp\left((-4.569 \pm 1.345) + \ln\frac{T}{689.9 \text{ K}}\right) = 1.50 \times 10^{-5} T$$


- Weak temperature dependence over experimental range
 - Heats of adsorption statistically insignificant
 - Linear temperature dependency describes data
- Presence of other gases, especially H₂S can reduce flux by 50%

Test conditions	Test 1	Test 2a	Test 2b	Test 2c
H ₂ / %	50.0	50.0	33.0	4.8
CO / %	1.0	1.0	1.3	2.0
CO ₂ / %	30.0	30.0	40.0	57.0
H ₂ O / %	19.0	19.0	25.0	36.2
H ₂ S / %	0.000	0.002	0.003	0.004
N ₂ / %	0.000	0.000	0.000	0.000
Total feed pressure / psia	200	200	200	200
Temperature / °C	400	400	400	400
Absorption factor	1.20	1.48	1.69	1.95
Flux target / [SCFH/ft ²]	200	200	200	200
Required Pure H ₂ Flux / [SCFH/ft ²]	241	296	337	390

Estimated required oure H₂ flux needed to achieve 200 ft³ft²h⁻¹ in DOE test protocol


Technical: Separator Failure at High T & P

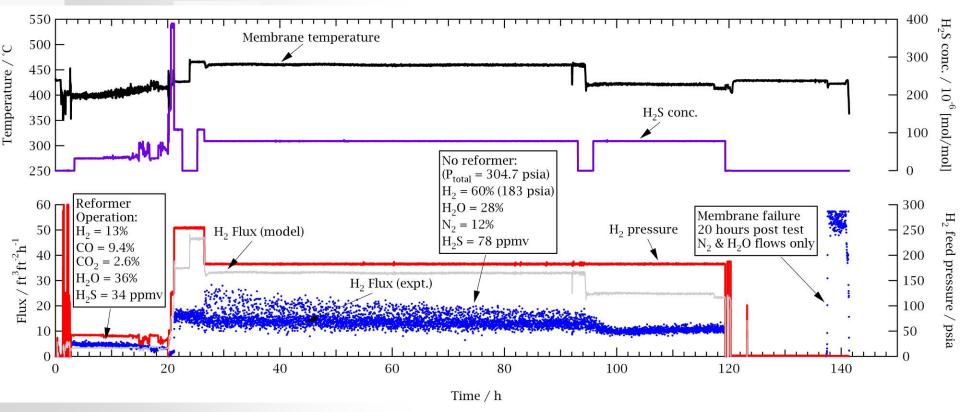


- Sustained 4 hours leak-free operation at 559 °C with 487±4 ppmv H₂S
- Separator failure after 4.5 hours
- Single tube defect failure plus some corrosion of internal stainless steel elements

Technical: Membrane Tube Failure Root Cause Analysis

487 ppmv H₂S affects stainless steel only; Defect failure at high T & P

Cross-section of membrane failure point

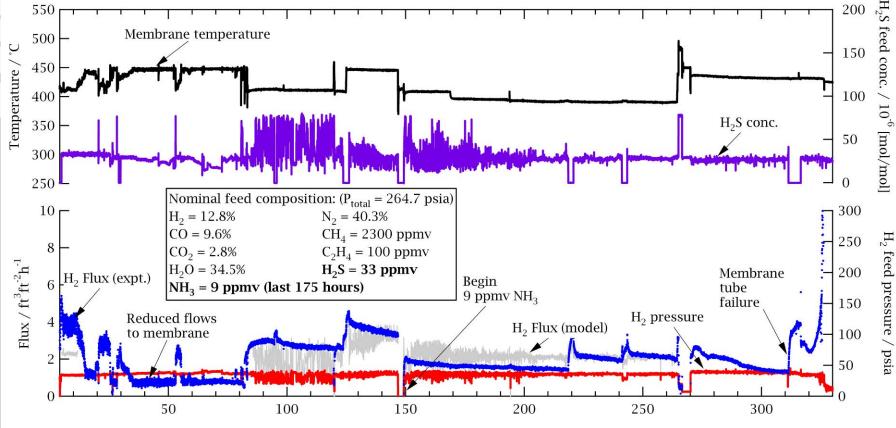

Cross-section of stainless steel portion of separator

- No sulfur found in PdCu alloy cross-section elemental map
- Failure point had a 30-µm defect in membrane tube
- 487 ppmv sulfur corroded stainless steel components, forming metal sulfides
- Newer inspection procedures in place to screen out membranes with defects

United Technologies
Research Center

Technical: Stable Operation with 78 ppmv H₂S

Sulfur has no effect on PdCu alloys; Defective tubes can fail at 290 psig

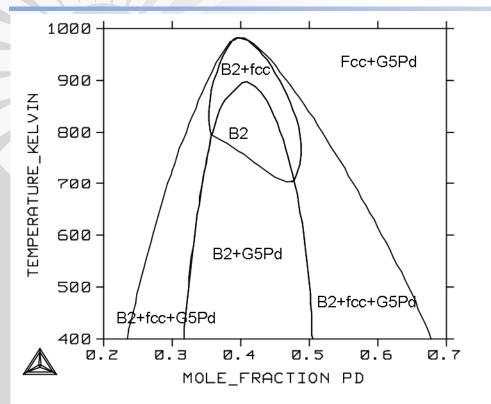


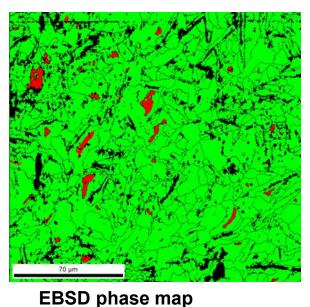
- Separator tested for >200 hours with 20–90 ppmv H₂S at 410 °C–450 °C
- Sulfur concentrations at temperatures of 400 °C–500 °C have no impact on membrane performance
- Operation at pressures of 290 psig causes failures in defective membrane tubes

Technical: Operation with Reformate for >300 hours

Time / h

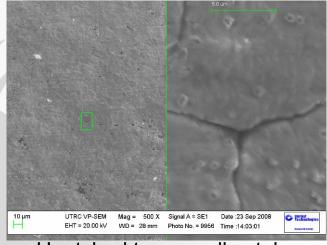
- Separator tested for >300 hours with 20–90 ppmv H₂S at 400 °C–450 °C
- H₂S and NH₃ at temperatures of 400 °C–500 °C have negligible impact on membrane performance
- Operation at pressures of >250 psig causes failures in defective membrane tubes


Technical: Design & Construction of Membrane Separators

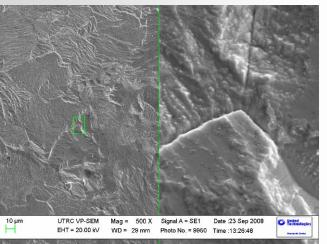

Task 3 Summary

- Produced five separators with P+E fcc PdCu alloy
 - Four separators have been evaluated
 - Three of the four have been tested to failure
- Produced five separators with UTRC ternary bcc PdCuTM alloy
 - Separators produced with surface barrier (low flux binary alloy)
 - Etching process developed to remove surface barrier
- At least two additional ternary PdCuTM alloy separators to be produced in 2009
 - Test in May time frame
 - Perform ex situ etching if necessary prior to separator manufacture
 - Based on UTC (P&W) experience, an alternative approach to make alloy tubes can be done without etching, although not within the current project resources

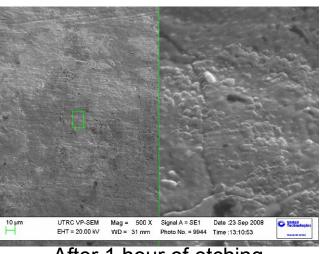
Technical: Binary Alloy on Surface of Ternary Alloy (FY2008)

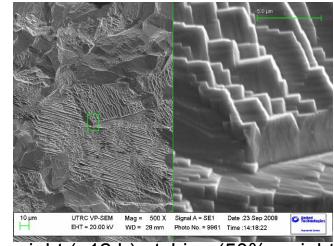


Green = PdG5; Red = PdCu

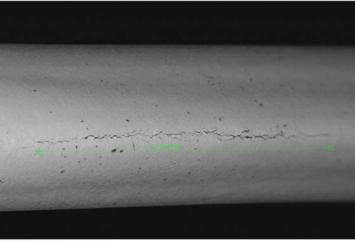

- X-ray diffraction confirmed formation of bcc PdCu as predicted
- Electron Backscatter Diffraction (EBSD) on individual tube indicates presence of binary Pd alloy covering surface of membrane
- Surface alloy layer 500 Å 700 Å thick by microprobe analysis
- Heat treatments to desegregate/homogenize result in limited improvement
- Etching development chosen for in situ separator treatment
 United Technologies
 Research Center

Technical: Etching Development


Etching solution can remove surface of membrane in the presence of stainless steel in less than 3 hours


Unetched ternary alloy tube

After 3 hours of etching (5% weight loss) United Technologies Research Center


After 1 hour of etching

Over night (≈12 h) etching (50% weight loss)

Technical: Etching Development

Etching in situ resulted in stress fractures at defect sites on a few tubes when separators tested at 350 °C

Stress fracture in leaking etched tube

- Etched two separators
 - 1-h with no flux improvement
 - Another 1-h treatment yields leaks at 350 °C
 - 3-h treatment also leads to leaks at 350 °C
 - Tube failure rate approximately 11% (1/9)
- Etching does not degrade seals
- Moving to ex situ etching of new batch of alloy tubes if necessary

Allow P+E to screen out defective tubes before separator constructed United Technologies Research Center

Collaborations

- Partners
 - Power+Energy (Industry)
 - Manufacture of hydrogen separators
 - UTRC alloy fabrication
 - Metal Hydride Technologies (Ted Flanagan from Univ. of Vermont)
 - Fundamental experiments on hydrogen solubility
 - Experimental measurements of alloy systems for thermodynamic phase modeling
- Technology Transfer
 - Colorado School of Mines (Robert Braun from Colorado School of Mines)
 - DOE project: Coal/Biomass Gasification at the Colorado School of Mines
 - Transferred permeability model for trade studies on using membranes in system analysis of integrated gasification fuel cell power plants (IGFC)

Future Work

Focus on P+E alloy testing & UTRC alloy improvements

First quarter 2009

- Durability studies on fcc PdCu to further quantify resistance to poisons
- Demonstrate >500 h durability
- Second quarter 2009
 - Evaluate performance of additional ternary alloy separators
 - Durability studies on bcc PdCuTM

Project Summary

- Constructed ten (10) commercially manufactured separators for evaluation
- Evaluated performance of fcc PdCu separators
 - Quantified effect of H₂S, CO, CO₂, N₂, and H₂O on H₂ permeability
 - Demonstrated sulfur resistance of PdCu alloy
- Produced five (5) separators with UTRC ternary composition
 - Secondary phase barrier formed on outer surface of membrane
 - Work in progress to improve performance in two additional separators
- Higher pressure experiments using poison-doped reformate to be conducted for remainder of project
 - Quantify effect of H₂S, HCI, and NH₃ on H₂ permeability
 - Demonstrate >500 h durability with poisons

Acknowledgments

- United Technologies Research Center
 - Testing: John Costello, Tom Hale, Robert Hebert, Gayle Marigliani, Jeffrey Walker, & Ying She
 - Atomistic Modeling: Susanne Opalka
 - Characterization: Jeff Covington, Bruce Laube, & C. Barila
 - Resources: Zissis Dardas, Dan Pfau, & Craig Walker
- Power+Energy
 - Albert Stubbmann & Peter Bossard
- Metal Hydride Technologies
 - Ted Flanagan
- U.S. Department of Energy
 - Arun Bose & Daniel Cicero