PDP_04_Madan

PHOTOELECTREMICAL HYDROGEN PRODUCTION

Arun Madan MVSystems, Inc. May 19, 2009

DE-FC36-07GO17105

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 9/1/2007
- Project end date: 8/31/2009
- Percent complete: ~65%

Budget

- Total project funding*
 - DOE share: \$1,358,827
 - Contractor share: \$339,707
- Funding received in FY08
- Funding for FY09: \$150,000

* funds cover work reported in posters PDP04, PDP05, and PDP06

Barriers

•Barriers for photoelectrochemical hydrogen production technologies:

- -Y: Materials Efficiency
- -Z: Materials Durability
- -AB: Bulk Materials Synthesis
- -AC: Device Configuration Designs

Partners

- <u>Collaborations</u>: Hawaii Natural Energy Institute (HNEI), National Renewable Energy Laboratory (NREL), University of Nevada at Las Vegas (UNLV)
- **Project lead:** MVSystems, Inc.

Overview

poster #PDP04 Progress in the Study of <u>Amorphous Silicon Carbide</u> as a Photoelectrode in Photoelectrochemical Cells

poster #PDP05

Progress in the Study of *Tungsten Oxide Compounds* as Photoelectrodes in Photoelectrochemical Cells

poster #PDP06 Progress in the Study of <u>Copper Chalcopyrites</u> as Photoelectrodes in Photoelectrochemical Cells poster #PDP04

Progress in the Study of Amorphous Silicon Carbide (a-SiC) as a Photoelectrode in Photoelectrochemical (PEC) Cells

Arun Madan MVSystems, Inc. May 19, 2009

Relevance-Objectives

Advantages of a-SiC photolectrode

- ✓ Lower Eg in comparison with WO₃ produces more photocurrent.
- Eg can be increased with carbon inclusion into the amorphous silicon (a-Si) material.
- ✓ A-SiC uses same deposition technique (PECVD) as a-Si solar cells (or PV).

Our goal ...

By September, 2009, fabricate the hybrid a-Si tandem solar cell/a-SiC photoelectrode (PV/a-SiC) device which exhibits*,

- photocurrent \geq 4 mA/cm²,
- durability in electrolyte \geq 200 hrs.

Max current available vs. Bandgap (Eg).

Schematic diagram of the PV/a-SiC hybrid device.

*From "Statement of Project Objective", DE-FG36-07GO17105, Attachment #5.

Relevance-Milestones

(Towards the end of Year 2, a GO/NO-GO DECISION evaluation will be performed)

Future: Device optimization

Photocurrent of 5 mA/cm² over 300 hrs; cluster-tool fabrication on extended area flexible substrates

> Photocurrent of 6 mA/cm² over 500 hrs; PEC prototype devices: 7.5% STH efficiency over 500 hours

Relevance-Barriers

Barrier	Challenges	Strengths			
Υ.	The band-edge of the a-SiC may	- Bandgap tuned readily from 2.0 to 2.3eV.			
Materials	be poorly aligned for practical	-Flatband voltage altered by +1.6V with integrated a-Si			
Efficiency	water splitting.	tandem solar cell.			
Ζ.	Corrosion and photo-corrosion	– Stability up to 100 hour in pH2 electrolyte demonstrated.			
Materials	behavior over extended time	-Platinum surface treatments enhance stability of a-SiC			
Durability	periods in a variety of electrolyte.	photoelectrodes on metal substrates.			
AC.	Optimized a-Si tandem solar cell	- Extensive modeling shows the hybrid PEC cell could			
Device	needs to be developed to match	lead to 10% STH efficiency.			
Configuration	the photocurrent and photovoltage	– Initial results from the first hybrid PEC cell are promising:			
Designs	characteristics of newly-	3-5 mA/cm ² (3-electrode) and \sim 1 mA/cm ² (2-electrode) at			
	developed a-SiC photoelectrodes.	zero bias.			

Approaches

Material to hybrid PEC cell development

a-SiC material

a-SiC photoelectrode

Hybrid PEC device

- Bandgap (Eg)
- Photosensitivity (σ_L/σ_d)*
- Defect density (γ)**
- Bonding configuration (IR)
- Device performance (p-i-n solar cells)

- Surface band structure (XPS/UPS)
- Photocurrent
- Flatband voltage
- Durability in electrolyte
- Surface modification

- Flatband voltage
- Photocurrent and STH*
 efficiency
- Durability in electrolyte
- Surface modification
- * STH: Solar-to-hydrogen.

* $\sigma_{\rm L}$ and $\sigma_{\rm d}$ – Photo- and dark conductivity.

^{**} γ is derived from $\sigma_L \propto F^{\gamma}$, where F is the intensity of illumination (equivalently generation rate). For good intrinsic i layer with low density of states: 0.9< γ <1.

Progress: Work Performed since 2008 Annual Merit Review and Peer Evaluation Report

- Fabrication of an integrated hybrid PEC device containing a-Si tandem solar cell and a-SiC photoelectrode.
- Investigation of the effect of surface oxide (SiOx) on the photocurrent
- Improvement of the PV performance of a-Si tandem solar cell used in the hybrid PEC device

<u>Progress</u>: Deposition of a-SiC Material and Photoelectrode

All a-SiC films, photoelectrodes, solar cells and the PEC hybrid devices were fabricated in the cluster tool PECVD/Sputtering System, designed and manufactured by MVSystems, Inc.

Main deposition parameters:

RF power:	10-20 W			
Excitation frequency:	13.56 MHz			
Pressure:	300-550 mTorr			
SiH ₄ flow rate:	20 sccm			
CH ₄ flow rate:	0-20 sccm			
H ₂ flow rate	0-100 sccm			
Substrate temperature	200°C			

Progress: Opto-electronic Properties of a-SiC

 E_g vs. $CH_4/(CH_4+SiH_4)$

- Thickness of a-SiC films: 400-450 nm
- Dark conductivity $\sigma_d < 10^{-10}$ S/cm
- H₂ concentration in a-SiC 7~9%

Normalized $I_{ph} \& \gamma$ vs. $CH_4/(CH_4+SiH_4)$

• The measured photocurrent is normalized at 550 nm using the following equation:

 $\mathsf{I}_{\mathsf{ph}} = \mathsf{e}.\mathsf{N}_{\mathsf{ph}} \left(\lambda\right) [1\text{-}\mathsf{R}(\lambda)].[1\text{-}\exp(-\alpha(\lambda)d)].\eta\tilde{\imath}/\tau$

• γ is derived from $I_{ph} \propto F^{\gamma}$, indicative of density of states (DOS) in the film. For good intrinsic i layer with low DOS: $0.9 < \gamma < 1$.

At a bandgap of ~2.2 eV, the a-SiC films have good optoelectronic properties

Progress: PEC Characteristic of a-SiC Photoelectrode

Progress: Performance of a-Si Tandem Device

Progress: Hybrid PEC Cell: Flatband Voltage (V_{fb})

Flatband voltage vs. pH

•#A, #B and #C - hybrid PEC devices.

- V_{fb} determined by the illuminated open-circuit voltage (IOCP).
- For the p-type photoelectrode, V_{fb} needs to be below H_2O/O_2 redox potential for water splitting.
- In the hybrid PEC device, the flatband voltage shifts by ~+1.6V or +0.97V below H₂O/O₂ potential at pH2

Progress: Hybrid PEC Cell: Photocurrent

Test conditions:

- Sample tested: hybrid PEC cell
- Counter electrode: Pt
- Electrolyte:

*buffer pH2 (*sulphamic acid solution with added potassium biphthalate)

Current vs. potential (3-electrode)

Current vs. potential (2-electrode)

[Data measured by HNEI]

Photocurrent at zero bias is much smaller than in the 3-electrode set up, suggesting existence of limiting factors such as, type of *electrolyte*, *counter electrode* and formation of *SiOx* on the surface.

Progress: Hydrogen Evolution

Test conditions:

- Sample tested: hybrid PV/PEC cell
- Counter electrode: RuO₂ or WO₃
- Electrolyte: $0.33M H_3PO_4$

With RuO₂ counter electrode

light a-SiC(i), ~100nm a-Si(i), 80nm a-Si(i), 360nm glass SnO₂

With WO₃ counter electrode

Progress: Corrosion resistance up to ~150 hrs

Test conditions:

- Sample tested: hybrid PEC cell
- Counter electrode: *Pt*
- Electrolyte: buffer pH2
- Current bias: 1.6 mA/cm²

Current vs. potential (before and after test)

Before testing

On SnO₂ substrate

After 148 hrs testing

- H₂ production throughout the test
- Little degradation after corrosion test for 148 hrs

[Data measured by NREL]

Progress: Surface Treatment by HF Acid

XPS spectra on a-SiC films

- * HF (hydrofloric acid) concentration = 48% [Data measured by UNLV]
 - After HF etch for 30s, photocurrent increases and its onset shift anodically
 - Photocurrent degrades and reverts to its initial value when the a-SiC photoelectrode is exposed to the air

- A few nm thick SiOx formation on a-SiC surface
- After HF etch for 30-60s, SiOx layer removed

Effects of SiOx on photocurrent

Test conditions:

- Sample tested:
- Electrolyte:
- Counter electrode:
- HF dip:

hybrid PEC cell buffer pH2 RuO₂ 5% HF for 30 sec

After HF etch, photocurrent of the hybrid PEC device changes little in electrolyte for up to 100 hrs

[Data measured by HNEI]

Collaborations

- Partners:
 - Hawaii Natural Energy Institute (Academic): collaboration about characterization of new photoelectrode materials and the hybrid PEC device;
 - National Renewable Energy Laboratory (Federal): collaboration to perform durability tests on new photoelectrode materials, hybrid PEC device and surface modification;
 - University of Nevada at Las Vegas (Academic): collaboration to analyze the surface energy band structure of new photoelectrode materials.

Future Work

- Improvement of photocurrent in the hybrid PEC cell.
 - Focus minimize over-potential losses to enhance the photocurrent at zero potential using 2-electrode setup.
 - 1. Modify the surface structure of intrinsic a-SiC using the following approaches,
 - a. thin SiNx layer deposition on the a-SiC photoanode.
 - b. C-rich surface for minimizing the formation of SiOx. This can be controlled via altering the deposition conditions during growth of the a-SiC film.
 - c. deposition of a thin halogenated layer on a-SiC photoanode.
 - d. Use Pt nano-particles for surface modification.
 - 2. Analyze the surface structure of the a-SiC photoelectrode after a 100-hour test, in order to understand why the photocurrent of the a-SiC photoelectrode increased while its onset shifted anodically after a 100 hr durability test. This work will be collaborated with UNLV group.
 - 3. Improve the counter electrode.
 - Explore other counter electrode materials (under evaluation).

Future Work (cont'd)

□ Improvement of photocurrent in the hybrid PEC cells.

Objective: Fabricate the a-Si tandem solar cell to with efficiency > 10%, by

(a) minimizing the damage induced by the sputtering (growth of ZnO or ITO) process;(b) using a lower bandgap intrinsic material in the bottom cell to enhance Jsc.

Simultaneously use stainless steel (SS) to replace $glass/SnO_2$ as the substrate and fabricate a-Si tandem device on it. With improved a-Si tandem device, fabricate hybrid PEC devices to increase the solar-to-hydrogen efficiency.

Durability tests.

- Extend the durability test of a-SiC photoelectrodes to 200-hour.
- Improve the durability using Pt nano-particles
- Development of the a-SiNx photoelectrode.
 - High photosensitivity ($\sigma_L/\sigma_d = 10^5 10^6$) achieved, with Eg ~ 2 eV
 - Solar cells using a-SiNx as the absorber layer: under going.
 - The a-SiNx photoelectrode: fabricated and being tested.

Amorphous Silicon Carbide Summary

- Hydrogen evolution (bubbles) was successfully demonstrated in the hybrid a-Si tandem solar cell/a-SiC photoelectrode (PEC) cell.
- The hybrid PEC cell, fabricated using the PECVD technique, exhibits following characteristics:
 - Flatband voltage: shifts by ~+1.6V
 - Photocurrent: 3-5 mA/cm² (3-electrode); ~0.83 mA/cm² (@0V) (2-electrode)
 - Photocurrent measured in 2-electrode setup is affected by
 - ----- type of electrolyte;
 - ----- type of counter electrode;
 - ----- thin SiOx on the surface of a-SiC.

□ The hybrid PEC cell exhibits excellent durability in pH2 electrolyte for up to ~150 hrs (so far tested).

□ PV performance of a-Si tandem solar cells has been improved:

Device Configuration	Jsc (mA/cm2)	Voc (V)	FF	η (%)
SnO ₂ /pin/pin/ZnO/Ag	8.70	1.656	0.668	9.62
SnO ₂ /Ag/ZnO/a-Si pin/pin/ITO	8.58	1.694	0.682	9.91

Project Summary

Relevancy

The MVSystems/UH project is accelerating the development of **three important PEC thin-film materials classes** (a-SiC, WO3 and CGSe) with high potential for reaching DOE goals of practical PEC water-splitting.

≻Approach

Use existing knowledge of the three PEC thin-film materials and their PV performances to apply them to a PEC system for hydrogen production.

≻Progress

ltems	Thin-film materials	2008		2009			Note	
		Target	Achieved	Status	Target	Achieved	Status	
Material photocurrent	a-SiC		7-8 mA/cm ²	100%		7-8 mA/cm ²	100%	
	WO ₃	\geq 3 mA/cm ²	2.8-3 mA/cm ²	100%	≥4	3.6 mA/cm ²	90%	
	CGSe		20 mA/cm ²	100%	mA/cm ²	20 mA/cm ²	100%	
Material/Device durability	a-SiC		100 hrs	100%		150 hrs	75%	
	WO ₃	≥ 100 hrs	100 hrs	100%	≥ 200 hrs	100 hrs	50%	
	CGSe		10 hrs	10%		10 hrs	5%	
Device STH efficiency	a-Si/a-SiC					1%	25%	H ₂ production observed
	WO ₃				≥ 5%	3.2%	65%	expected from current matching
	CGSe							

Project Summary (Cont'd)

Collaboration

In order to promote the needed scientific breakthroughs in PEC R&D, collaborations have been developed within the US DOE PEC Working Group and with the IEA-HIA PEC Annex-26.

Future work

- (1) Further improve the properties of thin-film materials.
- (2) Develop new surface modification techniques.
- (3) Establish band diagrams for the thin-film photoelectrode/electrolyte system.
- (4) New techniques will be used to evaluate PEC films interface @ UNLV and use new information to focus fabrication and device matching efforts effectively.
 (5) Improve the PV performance of the thin-film solar cell used in the hybrid PEC device.