

1

PHOTOELECTREMICAL HYDROGEN PRODUCTION

Arun Madan MVSystems, Inc. May 19, 2009

DE-FC36-07GO17105

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 9/1/2007
- Project end date: 8/31/2009
- Percent complete: ~65%

Budget

- Total project funding*
 - DOE share: \$1,358,827
 - Contractor share: \$339,707
- Funding received in FY08
- Funding for FY09 (tbd)

* funds cover work reported in posters PDP04, PDP05, and PDP06

Barriers

•Barriers for photoelectrochemical hydrogen production technologies:

-Y: Materials Efficiency
-Z: Materials Durability
-AB: Bulk Materials Synthesis
-AC: Device Configuration Designs

Partners

- Collaborations: National Renewable Energy Laboratory (NREL), University of Nevada at Las Vegas (UNLV), University of California at Santa Barbara (UCSB)
- **Project lead:** MVSystems, Inc.

Overview

poster PDP04:

Progress in the Study of <u>Amorphous Silicon Carbide</u> as a Photoelectrode in Photoelectrochemical Cells

poster PDP05: Progress in the Study of <u>*Tungsten Oxide Compounds*</u> as Photoelectrodes in Photoelectrochemical Cells

poster PDP06: Progress in the Study of <u>Copper Chalcopyrites</u> as Photoelectrodes in Photoelectrochemical Cells

Progress in the Study of *Tungsten Oxide Compounds* as Photoelectrodes in Photoelectrochemical Cells

> Nicolas Gaillard Hawai'I Natural Energy Institute University of Hawai'i May 19, 2009

Relevance - Objectives

Advantages of tungsten oxide:

1) Good performances demonstrated in several applications

- 2) Film can be deposited using low-cost processes
- 3) WO_3 satisfies main criteria for water splitting

WO₃ PEC champion device:

→ 3.1% STH efficiency in a standalone config. (MVS bottom PV cell).

...but this material suffers from :

1) its bandgap value (2.6 eV) that limits light absorption 2) the position of the valence band (E_V) vs. oxygen halfreaction potential: external bias needed.

Relevance-milestones

	Program targets	WO ₃ progress status				
	Year 1: 10/20079/2008					
✓	Material Photocurrent ≥ 3 mA/cm ²	100% @ 12/2007	2.8 to 3 mA/cm ² demonstrated with pure WO ₃ -based PEC electrode			
✓	Durability 100 hrs	100% @ 1/2008	100 hr durability achieved in 0.33M H ₃ PO ₄ solution			
✓	Device STH efficiency ≥ 3.7%	85% @ 12/2007	3.1% achieved with mechanical stack using underlaying PV cell			
	Year 2: 10/200810/2009					
✓	Material Photocurrent ≥ 4 mA/cm ²	90% @ 3/2008	3.6 mA/cm ² demonstrated with WO ₃ - based bilayer PEC electrode			
✓	Durability 200 hrs	50% @ 1/2008	100 hr durability achieved in 0.33M H_3PO_4 solution			
✓	Device STH efficiency ≥ 5%	65% @ 3/2008	3.2% expected from current matching of both bilayer PEC electrode and PV cell J-V curve			

(Towards the end of Year 2, a GO/NO-GO DECISION evaluation will be performed)

Relevance-barriers

Barrier	Challenges	Strengths			
Y. Materials Efficiency	 The bandgap of 2.6 eV for pure WO₃ limits PEC photocurrent levels to a maximum achievable STH of ~5%. The position of the conduction band minimum for pure WO₃ in standard acidic media is low, requiring additional biasing. 	 Has "direct-like" bandgap and good carrier transport properties resulting in a high PEC photocurrent collection efficiency. Alloying of the material can theoretically lead to a reduction of bandgap by raising the valence band while potentially increasing the conduction band at the same time, thereby reducing bias requirements. 			
Z. Materials Durability	The photostability over extended time periods for new tungsten-alloy compositions requires validation.	Stability of pure tungsten oxide in acidic media is well documented and verified in various combinations of time and operating conditions.			
AB. Bulk Materials Synthesis	Materials need to be fabricated using low temperature deposition processes to be compatible with process scalable manufacturing.	Low temperature deposition (bellow 300C) has been demonstrated using sputtering techniques.			
A.C. Device Configuration Designs	Optimized tandem/multijunction device configurations need to be developed to match the photocurrent and photovoltage characteristics of newly-developed tungsten-based compounds.	Thin films in general are compatible with the concept of multijunction devices, such as the hybrid photoelectrode. Sputtering, for example, of PEC top layer is compatible with an underlying solar cell. STH efficiency of 3.1% demonstrated with underlaying PV cell.			

Approach

Improvements can be obtained from every component of the PEC electrode to achieve more than 4 mA.cm⁻² by 2009^(*)

<u>Interface</u>: **catalyst nano-particle** deposition to enhance charge transfer at the interface. **(under investigation since 2009)**

<u>Surface</u>: band-edge position tuning with bilayer to reduce external bias (under investigation since 2008)

<u>Absorber (bulk)</u>: bandgap decrease with ion incorporation to enhance light absorption (under investigation since 2006)

Approach

<u>THEORY</u>

Effect of ions incorporation on material E_G and band-edges position.

CHARACTERIZATIONS

Photocurrent, Flat-band potential,

OER/HOR, efficiency, morphology,

advanced spectroscopy

University of Nevada, Las Vegas

Bulk materials, bilayers,

catalyst nano-particles

Progress: Work Performed since 2008 Annual Merit Review and Peer Evaluation Report

- Continuing WO₃ bulk modification using ion incorporation:
 Synthesis of new alloys (UH)
 - Theoretical analysis on band-gap reduction (NREL)
- \Box Investigations on WO₃-based bilayer concept:

10

- Fabrication of new devices (UH)
- Surface electronic properties analysis (UNLV)
- Crystallographic and structural analysis (NREL)
- \Box Evaluation of RuO₂ nano-particle deposition for catalytic treatment
 - Deposition of thick (1 micron) films (UH)
 - Characterization of RuO_2 film's oxygen evolution rate vs. that of Pt foil (UH)
 - First evaluation of RuO₂ nano-particle onto WO₃ film (UH and UCSB)

¹¹ <u>Progress</u>: deposition and performance of WO₃

Perkin-Elmer 2400 three-gun Sputtering system

Reactive sputtering deposition:

- RF mode (13.56 Mhz)
- material target: pure W
- gas: argon (7 sccm) + oxygen (2.2 sccm)
- deposition temperature: 270°C

Low temperature process solves barrier AB

Pure WO₃films

Electrical performances

Continuous improvement since 2004

Progress: Absorber E_G modification

- Example: nitrogen incorporation using N_2 gas to reduce WO₃ bandgap (reported in 2008)

...but

Effective band gap reduction

Diminution of electrical performances

12

N:WO₃

→ Ion incorporation strongly alters grain crystallographic properties & film performances

New avenue required to improve WO₃-based PEC electrode

¹³ Progress: WO₃-based bilayer PEC electrode

→Ion incorporation in WO₃ surface can shift both E_C & E_V, while keeping pure WO₃ optical and conduction properties

- Example: molybdenum incorporation into WO₃ surface

Top view of film morphology (scanning electron microscopy)

Vacuum

Top layer

 χ_2

 χ_1

WO₂

Ec

E_F

Ev

Scanning electron microscopy

Transmission electron microscopy

Addressing barrier Y

 H^+/H_2

 O_2/H_2O

Top layer follows bottom film pattern: WO₃ bottom layer improve Mo:WO3 cristallinity

¹⁴ Progress: WO₃-based bilayer PEC electrode

- Example: molybdenum incorporation into WO₃ surface

1) Bilayer vs. Mo:WO₃: +100% photocurrent, from 1.8 mA.cm⁻² to 3.6 mA.cm⁻²

2) Bilayer vs. WO_3 : +15% photocurrent, From 3 mA.cm⁻² to 3.6 mA.cm⁻² (<u>new champion device, 2008</u>)

Current matching simulation using both PEC & PV J-V curves

3.2% STH efficiency can be achieved with WO₃-based bilayer PEC electrodes

¹⁵ <u>Progress</u>: WO₃-based bilayer PEC electrode

- Example: molybdenum incorporation into WO₃ surface

Continuing WO₃-based PEC electrodes performances improvement with bilayer

¹⁶ Progress: Catalyst nano-particle deposition

Step 1: thick film deposition

- Pure Ru target @ 200W
- Substrate (glass) temperature : 250°C
- Various oxygen partial pressures

\rightarrow Electrical characterization: electrolyzer

→ Electrical characterization: tandem a-SiC

RuO₂ is a far better counter electrode for oxygen production than Pt

17 Progress: Catalyst nano-particle deposition

Step 2: catalyst nano-particle deposition

Particle formation requires 3D film growth

 \rightarrow Effect on oxygen partial pressure (p.p.) on bulk RuO₂ crystallographic properties

XRD patterns of thick RuO₂ films

Low O_2 p.p.: grains oriented along [200], i.e. 2D \bigcirc High O_2 p.p.: grains oriented along [101], i. e. 3D \bigcirc

¹⁸ Progress: Catalyst nano-particle deposition

Step 3: catalyst nano-particle characterization

WO₃ (no nano-particles)

Catalyst nano-particles have been successfully deposited using 2 minute process after WO₃ synthesis

(electrical characterization ongoing)

 $WO_3 + RuO_2$ (low $O_2 p.p.$; 2D growth)

 $WO_3 + RuO_2$ (high O_2 p.p.; 3D growth)

Collaborations

– US Department of Energy PEC working group: Leading task force on WO_3 and active participation to the Working Group on PEC measurement standardization.

– National Renewable Energy Laboratory: collaboration to perform theoretical research and advanced morphological analysis of new WO₃-based materials.

– University of Nevada at Las Vegas: collaboration to analyze the surface energy band structure of new photoelectrode materials.

- University of California in Santa Barbara: collaboration on surface treatment for catalytic purposes.

– MVSystems Incorporated: development of PV cell to demonstrate hydrogen production in a standalone configuration.

– International Energy Agency/HIA/Annex 26: collaboration with international institutes and universities including EMPA (Swiss) and University of Warsaw (Poland).

Future Work

- 1) New approaches for ion incorporation into WO_3 bulk to modify E_G
 - Close collaboration with NREL theory team to define new ions: Al, Si and Se
 - New processes development:
 - use of seed layers to enhance crystallinity
 - higher process temperatures
 - post-deposition thermal annealing

2) Development of new surface modification techniques

- Deposition of catalysts nano-particle (RuO_2) to enhance charge transfer
- Discovery of new bilayer systems to optimize band-edge alignment

3) New techniques will be used to evaluate PEC films interface @ UNLV

- In vacuum: effect of ion incorporation on surface E_G
- In liquid (in situ): electrical environment of newly incorporated atoms

Tungsten Oxide Summary

•<u>Relevance</u>

- 3.1% STH efficiency demonstrated in a standalone configuration with underlaying PV cell.
- WO₃-based materials corrosion resistant in acidic solutions demonstrated worldwide.

•<u>Approach</u>

- Synthesis: improvements can be performed on each component of the PEC electrode: absorber (light absorption), surface (band-edge position), interface (catalyst).
- Characterization: large tool chest of specific techniques available form DOE working group.

• <u>Progress</u>

• Increased photocurrent by +15% using bilayer # Better comprehension of crystallographic impact of films on WO₃-based PEC # Development of new RuO₂ material for oxygen evolution # First time evaluation of physical vapor deposition RuO₂ catalyst nano-particle in PEC world with controlled growth.

• Collaborations

• Intense collaborations with DOE working groups ("WO₃ task force" + "Measurement standardization WG") and international teams to effectively address key issues.

• Future Work

• Continuing investigation of WO₃-based alloys with new ions (absorber) # evaluate the concept of bilayer with other materials (band-edge position) # maintaining efforts of catalyst nano-particle research (interface) # better understanding of the material/electrolyte interface properties.

Project Summary

➢Relevancy

The MVSystems/UH project is accelerating the development of **three important PEC thin-film materials classes** (a-SiC, WO3 and CGSe) with high potential for reaching DOE goals of practical PEC water-splitting.

≻Approach

Use existing knowledge of the three PEC thin-film materials and their PV performances to apply them to a PEC system for hydrogen production.

➢Progress

Items	Thin-film materials	2008		2009			Note	
		Target	Achieved	Status	Target	Achieved	Status	
Matorial	a-SiC		7-8 mA/cm ²	100%		7-8 mA/cm ²	100%	
nhotocurrent	WO ₃	\geq 3 mA/cm ²	2.8-3 mA/cm ²	100%	\geq 4 mA/cm ²	3.6 mA/cm ²	90%	
photocultent	CGSe		20 mA/cm ²	100%		20 mA/cm ²	100%	
Material/Dovice	a-SiC		100 hrs	100%		150 hrs	75%	
durability	WO ₃	≥ 100 hrs	100 hrs	100%	≥ 200 hrs	100 hrs	50%	
durability	CGSe		10 hrs	10%		10 hrs	5%	
Device STH	a-Si/a-SiC					1%	25%	H ₂ production observed
efficiency	WO ₃				≥ 5%	3.2%	65%	expected from current matching
	CGSe							

Project Summary

Collaboration

In order to promote the needed scientific breakthroughs in PEC R&D, collaborations have been developed within the US DOE PEC Working Group and with the IEA-HIA PEC Annex-26.

➢ Future work

- (1) Further improve the properties of thin-film materials.
- (2) Develop new surface modification techniques.
- (3) Establish band diagrams for the thin-film photoelectrode/electrolyte system.
- (4) New techniques will be used to evaluate PEC films interface @ UNLV and
- use new information to focus fabrication and device matching efforts effectively.
- (5) Improve the PV performance of the thin-film solar cell used in the hybrid PEC device.