

Midwest Optoelectronics

Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

Liwei Xu

Midwest Optoelectronics, LLC, Toledo, Ohio

Anke Abken

Xunlight Corporation, Toledo, Ohio

William B. Ingler Jr. University of Toledo, Toledo, Ohio

> **05/19/2009** 6 to 9 PM - Grand Ballroom

Project ID # PDP_07_Ingler

This presentation does not contain any proprietary, confidential, or otherwise restricted information

A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy

Innovation for Our Energy Future

Renewable Energy Laboratory

Overview

Timeline

- Project start date: 10/13/2004
- Project end date: 05/31/2010
- Percent complete: 50%

Budget

- Total project funding
 - DOE share: \$2,921,501
 - Contractor share: \$760,492
- Funding received in FY07: \$400,000, \$200,000 for NREL
- Funding received in FY08: \$500,000
- Funding received for FY09: \$0

Barriers

- DOE MYPP Objective for PEC:
 - Develop advanced renewable PEC hydrogen generation technologies.
 - By 2018, verify the feasibility of these technologies to be competitive in the long term.
- Technical Targets:
 - 2013: STH Eff > 8%; Durability >1,000 hours;
 - 2018: STH Eff > 10%; Durability >5,000 hours;
 - PEC Hydrogen Generation Barriers MYPP 3.1.4:
 - Y. Materials Efficiency
 - Z. Materials Durability
 - AA. PEC Device and System Auxiliary Material
 - AC. Device Configuration Designs
 - AD. Systems Design and Evaluation

Partners

- Xunlight Corporation
 - Dr. Anke Abken
- University of Toledo
 - Dr. William B. Ingler Jr.
- National Renewable Energy Lab.
 - Dr. John Turner

Project Objectives (Relevance)

- To develop critical technologies required for costeffective production of hydrogen from sunlight and water using thin film-Si based photoelectrodes.
- Two approaches are taken for the development of efficient and durable photo-electrochemical cells.
 - An immersion-type photoelectrochemical cell in which the photoelectrode is immersed in electrolyte.
 - A substrate-type photoelectrochemical cell in which the photoelectrode is not in direct contact with electrolyte.

Milestones (Approach)

<u>Year 1:</u>

- Identify materials that meet the performance criteria for transparent, conducting, corrosionresistant (TCCR) materials, including having stability for up to 300 hours. First round of materials to be produced at 350°C or lower with 70% or greater transparency and at least 3 mA/cm² photocurrent.
- Identify materials that meet the performance criteria for photoactive semiconductor (PAS) materials, including having stability for up to 300 hours. First round of materials to be produced at 350°C or lower with 70% or greater transparency and at least 3 mA/cm² photocurrent.

<u>Year 2:</u>

- Develop TCCR material with a stability up to 700 hours. Second round of materials to be produced at 300°C or lower with 85% or greater transparency and at least 5 mA/cm² photo-current.
- Develop high-quality PAS material with a stability up to 700 hours. Second round of materials to be produced at 300°C or lower and at least 5 mA/cm² conductivity.
- Go/No-Go Decision Point (this decision point will occur at the end of Year 2 and will coincide with the end of Budget Period 1): Go/no go decision will be based, in part, on progress toward developing TCCR and PAS materials capable of meeting the following performance criteria: ≥700 hours of stability, capable of being fabricated at ≤300°C, ≥85% or greater transparency, and ≥5 mA/cm² photocurrent (TCCR material); ≥700 hours of stability, capable of being fabricated at ≤300°C, and ≥5 mA/cm² photocurrent (TCCR material).

<u>Year 3:</u>

- Develop TCCR material with stability up to 1,000 hours. Second round of materials to be produced at 250°C or lower with 90% or greater transparency and at least 8 mA/cm² photo-current.
- Develop high-qualify PAS material with stability up to 1,000 hours. Second round of materials to be produced at 250°C or lower and at least 8 mA/cm² photocurrent.
- Complete techno-economic analysis and energy analysis for the PEC systems for hydrogen production.

Approach

Two approaches are taken for the development of efficient and durable photoelectrochemical (PEC) cells.

Research Tasks (Approach)

- <u>Task 1:</u> Transparent, conducting and corrosion resistant coating for triple-junction tf-Si based photoelectrode; [Phase 1: 100%; Phase 2: 50%; Total: 50%]
- <u>Task 2:</u> Hybrid multijunction PEC electrode having semiconductorelectrolyte junction; [Phase 1: 100%; Phase 2: 50%; Total: 50%]
- <u>Task 3:</u> Understanding and characterization of photoelectrochemistry; [Phase 1: 100%; Phase 2: 50%; Total: 50%]
- <u>Task 4:</u> Development of device designs for low-cost, durable and efficient immersion-type PEC cells and systems; [Phase 1: 100%; Phase 2: 50%; Total: 50%]
- <u>Task 5:</u> Development of device designs for large-area, substratetype PEC panels; [Phase 1: 100%; Phase 2: 50%; Total: 50%]

- Study of In_2O_3 -Fe₂O₃ as a TCCR material.
- Research has focused on maximizing the long-term stability and current density of the film while maximizing transparency.
- The best sample so far was made at 275°C, 100 W Fe₂O₃ and 30 W In in 6% oxygen gas for two hours of deposition, and had an increasing current density of 4.32 mA/cm² at 1.6 V after 28 cycles.
- This was part of a relatively small region of stability in the parameter space including temperatures from 250°C to 275°C and oxygen concentrations from 5% to 6%.

- Stable current density appears to peak for total flow of around 11 sccm during deposition, at least for samples made at 250°C.
- Current study on In_2O_3 -InFe₂O₄.
- Optimized conditions being used for deposition on 4" × 4" substrates.

In₂O₃-Fe₂O₃ TCCR

 Experimental data and deposition parameters of samples deposited onto TEC-15 (SnO₂:F) glass, with data from cyclic voltammetry and UV-Vis spectrophotometry. 'S' denotes stable, 'U' denotes unstable. Samples marked with a star (*) were made with a new iron oxide target.

Sample	Temp	In	Fe ₂ O ₃	Ar	Ar/O ₂	O2	Total Flow	/ Dep.	Stability	Stable	1st cycle	28 cycles	Eg
	(C)	(W)	(W)	(sccm	ı) (sccm)	(%)	(sccm)	Time		Cycles	; (mA/cm ²) (mA/cm ²)	(eV)
729	250	30	100	8.0	2.67	5.005%	10.67	2:00	S	23	8.2	4.58	2.4554
730	250	24	80	8.0	2.67	5.005%	10.67	2:00	U	0	11.3	3.7	2.8818
731	250	27	90	8.0	2.67	5.005%	10.67	2:00	S	23	6.64	6.47	2.8492
732	250	30	100	8.0	3.43	6.002%	11.43	2:00	U	0	7.12	-	
733	250	30	100	10.8	2.70	4.000%	13.50	2:00	S	26	4.7	6	2.4538
734	250	30	100	8.0	2.67	5.005%	10.67	2:00	S	28	0.8	-	
737	200	30	100	8.0	3.43	6.002%	11.43	2:00	U	0	7.5	-	2.7985
739	225	30	100	8.0	2.67	5.005%	10.67	2:00	S	10	8.52	5.4	2.8102
741*	225	30	100	8.0	3.43	6.002%	11.43	2:00	S	10	7.3	6.3	
743*	225	30	100	9.1	3.90	6.000%	13.00	2:00	U	0	13.05	-	
744*	225	30	20-100	8.0	2.67	5.005%	10.67	2:00	U	0	12.2	-	
746*	200	30	100	8.0	3.43	6.002%	11.43	2:00	U	0	16.5	-	
748*	225	30	130	8.0	3.43	6.002%	11.43	1:00	U	0	11.5	-	
749*	250	30	100	8.0	2.67	5.005%	10.67	2:00	S	36	5.2	4.265	
750*	250	30	100	9.0	3.00	5.000%	12.00	2:00	S	28	6	4.025	
753*	250	30	100	7.5	2.50	5.000%	10.00	2:00	S	28	6.8	3.65	
755*	275	30	100	8.0	2.67	5.005%	10.67	2:00	S	28	6.1	4.17	
756*	275	30	100	8.8	2.20	4.000%	11.00	2:05	S	28	1.49	0.85	
757*	275	30	100	7.7	3.30	6.000%	11.00	2:00	S	28	5.7	4.32	
758*	250	30	100	8.0	2.67	5.005%	10.67	2:01	S	28	3.85	1.8	
759*	250	30	90	8.0	2.67	5.005%	10.67	2:00	S	28	4.74	2.447	
760*	275	30	100	7.2	3.88	7.004%	11.08	2:00	S	8	9.33	6.03	

- Fabrication of triple-junction a-Si/a-SiGe/a-SiGe solar cells (Photoelectrodes)
- Fabrication of triple-junction a-Si/a-SiGe/nc-Si solar cells (Photoelectrodes)
- Effect of GeH₄/Si₂H₆ flow ratio effect on the performance of a-SiGe solar cells was studied.
- I-V curves of a-SiGe solar cells deposited with various GeH₄/ Si₂H₆ flow ratios are shown:

Sample	GeH ₄ /Si ₂ H ₆	V _{oc}	J_{sc}	FF	EFF	
No.	Flow ratio	(V)	(I-V)	(%)	(%)	
GD2590	0	0.99	11.34	70.14	7.89	
GD2593	0.8	0.90	14.97	59.24	7.95	
GD2572	1.1	0.87	16.95	61.26	9.05	
GD2571	1.35	0.83	17.01	60.94	8.62	
GD2560	2	0.78	18.19	58.53	8.35	

The effect of different plasma treatments on the photovoltaic parameters of a-Si solar cells on SS substrates was studied;

steel substrates;

- (a) without any plasma treatment,
- (b) with Ar (95%) + O (5%) plasma,
- (c) with Ar (100%) plasma, and
- (d) with H (100%) plasma treatment.

Voltage (V)

0.6

0.8

12

(d)

0.4

10 -

0.2

0.2

 The effect of electroplating parameters on ZnO back reflector coatings was studied; **Optical Reflectance of electroplated ZnO**

- Parameter: •
 - > Temperature
 - > Nylon Mesh
 - > 7nO Thickness
- The total and diffused reflectance of electroplated ZnO layer deposited at different deposition temperatures was measured.
- The blue curves show a reference • sample with sputtered ZnO/Ag layer.

back reflector

Diffused reflectance: thickness variation of ZnO layer

Diffused reflectance: different Nylon mesh

Diffused Reflectance **EP-ZnO BR** 60 No E-ZnO -0.5 mA/cm2 50 1 mA/cm2 2 mA/cm2 40 å² 30 20 reference sample 10 0 250 350 450 550 650 750 850 950 Wavelength (nm)

Diffused reflectance: variation of current density

- The graphs show the effect of different processing parameter (current density, Nylon mesh) and the impact of EP-ZnO layer thickness on diffused reflectance;
- Increasing the EP-ZnO thickness increases the diffused reflectance and surface roughness;

- Work on developing photoassisted electrochemical process for shunt passivation focuses on metal salt selection used as electrolyte.
- Metal salt A was previously used for shunt passivation of PEC devices (no back reflector). Passivating with salt A requires using a low pH of the electrolyte, which might lead to corrosion when back reflectors (Al/ Ag/ZnO layer stacks) are used.
- As an alternative metal salt B was tested. The low light open circuit voltage (LLV_{OC}) improves for passivation conditions using 5-7V for 20 sec.

Low light V_{oc} measurement: metal salt B as electrolyte

• Work on shunt passivation using metal salt B,C for samples with back reflectors from Xunlight's 2 MW roll-to-roll (RTR) system is in progress. Salt B,C contain the same metal cation but a different anion; they are less corrosive than salt A and allow environmental friendly disposal. Although promising results for salt B have been achieved it is not as effective as using salt A.

- A method for ink-dot application was developed; the method will support lead to reliability improvements of substrate-type PEC cells.
- A method for increasing the durability of the metal foil adhesion to the silver current collection grid was developed. The robot is used to apply ink dots, or "tabbing", along a central metal foil conductor.
- The following procedure was used for the ink-dot application:
 - The operator will load a single 11" × 17" PV cell into the robot and engage a vacuum hold-down plate mechanism. The robot dispenser arm will be aligned to the start and stop points.

Device after ink dot application

Fisnar ink tabbing robot

- Then, all ink application points in between are calculated and the program runs accordingly.
- After the robot tabber runs its program the ink tabbing is cured in a conveyor oven.

Collaborations

Partners:

• NREL (Federal):

NREL is working on improved understanding of PEC process for a-Si based photoelectrodes (in collaboration with Dr. John Turner).

• University of Toledo (Academic):

UT is developing TCCR coatings, H_2 catalysts for immersion and substratetype PEC cells. Developing prototype 1ft × 1ft PEC devices with UT.

Technology Transfer:

• NREL:

NREL is supporting with device measurements on a-Si. a-SiGe, etc. solar cells (device characterization, stability testing etc.).

• University of Toledo:

UT is integral as they finished another DOE H_2 grant that was on basic research transferred to this project. UT is continuing development of the material work they started on the previous grant.

Proposed Future Work

- Task 1: Continue study and optimization of In_2O_3 -InFe₂O₄ TCCR coatings on solar cell surfaces.
- Task 2: Develop chemical plating for II/VI-semiconductors (CdS) as PAS & TCCR coating for immersion-type hybrid PEC cells.
- Task 4: Supported by University of Toledo 4" × 4" immersion- type PEC cells will be developed.
- Task 5: Supported by University of Toledo a 1ft × 1ft substrate-type PEC cell will be developed.
 - Long-term reliability studies and measurements will be done.
- Task 5: The shunt passivation process will be improved focusing on salt studies used as electrolytes.

Project Summary

- Relevance: Addresses DOE program objectives, specifically high-efficiency and low-cost production of hydrogen using photoelectrochemical methods.
- **Approach:** An immersion-type photoelectrochemical cell where the photoelectrode is immersed in electrolyte and a substrate-type photoelectrochemical cell where the photoelectrode is not in direct contact with electrolyte.

Technical Accomplishments and Progress:

Demonstrated a $4^{"} \times 12^{"}$ substrate-type PEC cell with $12^{"} \times 12^{"}$ model under development.

Have secured external funding for development of roll-to-roll unit for a-Si solar cell deposition at Xunlight.

• Technology Transfer/Collaborations:

Active collaboration with UT towards commercialization of research done at MWOE and Xunlight.

• Proposed Future Research:

Will leverage research done at UT to develop substrate-type PEC. Computational components at UT and NREL will be used for improved identification of material classes for sputter deposition of PAS and TCCR layers.