Oil-Free Rotor-Bearings For Hydrogen Transportation & Delivery

A Centrifugal Compressor Operating Beyond Its Bending Critical Speed

Hooshang Heshmat, PhD Mohawk Innovative Technology, Inc. May 19, 2009

Project ID # PDP_21_Heshmat

This presentation does not contain any proprietary, confidential or otherwise restricted information.

Timeline

- June 27, 2006
- March 27, 2009
- 95 Percent Complete

Budget

- Total proposed project funding
 - \$750,000 DOE SBIR
 - \$0 (SBIR No Cost Share)
- \$350,000 FY07 Funding
- \$350,000 FY08 Funding

Barriers

- Hydrogen Delivery Compressor
 - Reliability
 - System Cost
 - Efficiency of H2 Gas Compression

Partners

- Lead: Mohawk Innovative Technology, Inc. (MiTi[®])
- Mitsubishi Heavy Industries

Relevance

Objective:

- Demonstrate key technologies needed to develop reliable and cost effective centrifugal compressors for hydrogen delivery
 - Flow to 1,000,000 kg/day
 - Pressure rise from 300-500 up to 1200-1500 psig

	Project Target		
Category	2005 Status	FY2012	FY2017
Reliability	Low	Improved	High
Energy Efficiency	98%	98%	>98%
Capital Investment (\$M) (based on 200,000 kg of H2/day)	\$15	\$12	\$9
Maintenance (% of Total Capital Investment)	10%	7%	3%
Contamination	Varies by Design		None

- Contaminant-Free/Oil-Free

Hydrogen, Fuel Cells & Infrastructure Technologies Program

Relevance:

Objectives

- Assess feasibility of centrifugal compressors for hydrogen transmission and delivery
 - Demonstrate full-scale oil-free foil bearings in compressor simulator rig hardware
 - Test candidate bearing/shaft materials and coatings

Approach/Project Plan

Preliminary System	Detailed Design	Test, Evaluate &		
Design	& Fabrication	Refine Design		
Refine System	Single Stage	Single Stage		
Configuration	Compressor	Compressor		
Multi-Stage Sizing Compressor Stage Flow & Pressure Shaft Speed Bearing & Seal Requirements	Single-Stage Compressor, Inlet, Diffuser & Return Channel Shaft, Seals & Bearings for High-Speed Operation	Verify High- Speed Dynamics Measure Compressor Performance Refine and Scale Design		

Demonstrate feasibility of very high speed hydrogen centrifugal compressor through component test

Approach

Project Milestones

Month/Year	Milestone or Go/No-Go Decision			
Sept/06	Project Milestone: Update preliminary modular centrifugal compressor design to achieve pressure and flow			
Jan/07	Project Milestone: Complete bearing & test rig designs			
Mar/07	Project Milestone: Complete tribological testing			
Jul/07	Project Milestone: Fabricate foil bearings and rig mods			
Mar/09	Project Milestone: Complete simulator testing			

Oct/09 **DOE Milestone:** Down select novel compression technology for hydrogen delivery

Approach

Project Plan

- Demonstrate Feasibility of Oil-Free Hydrogen Centrifugal Compressor
 - Refine Compressor System Concept
 - Design Rotor-Bearing Dynamic Simulator
 - Full Size Rotor and Bearings
 - Simulate Dynamics and Bearing Loads
 - Validate Bearing Capability and Shafting Design Through Dynamic Testing in Air
 - Rotor-Bearing Operation Above Bending Critical Speed
 - Operation with Side Loads
 - Identify Impact of Hydrogen
 - Identify Candidate Bearing and Shafting Coatings with Appropriate Friction and Wear Life

Project Plan - Seals

- Demonstrate Feasibility of Oil-Free Hydrogen Centrifugal Compressor
 - Design Compliant Foil Shaft Seal
 - Full Size 2.5" Diameter
 - Differential Pressures to 200 psig
 - Validate Seal Capability through Testing in Air and with Helium Gas
 - Test Statically and At Speeds to 54,000 rpm
 - Pressures to 100 psi in Air, 200+ psig in He

Progress

- System Configuration Assessment Complete
- All Bearing Design and Fabrication Tasks Complete
- Bearing and Shaft Coating Tests Complete
- Rotor-Bearing Simulator Testing In Progress
 - Operation Above Bending Critical Speed on Gas Foil Bearings Demonstrated
 - Impact of Hydrogen Embrittlement Demonstrated
 - Requirements for High-Speed Shafting Identified
 - Foil Bearing Capabilities Demonstrated
- Dynamic Seal Design Analysis in Progress
- Static Testing of Preliminary Dynamic Seal Design Conducted

Technical Accomplishments

Bearing Selection

	Pro			Con				
Bearing	Efficiency	Total Load Capacity	Life	Speed	Contaminate Hydrogen	Auxiliaries	Cost	Other
Fluid Film	med-low	high	high	medium	Yes	Many	Operating	MisAlign
Magnetic	high	high	med-high	high	No	Electronics Backup Brg	Purchase	Failure Modes
Hydrostatic	medium	high	med-high	med-high	No	Hi-Press Gas	Precision Mfg & Operating	MisAlign Stability Debris
Foil	high	med-high	high	high	No	None	Low	Startup & Low Speed, Debris Filter
Hybrid	high	high	high	high	No	Electronics	Purchase	Debris Filter

DOE Hydrogen Program

Bearing Technology

Velocity Profile

Pressure Profile

Air Foil Bearing Concept

- Air bearings have a thin, smooth inner surface supported on compliant bump foils. When a shaft spins at high speed, a thin high pressure air film is generated, which lifts and supports the shaft.
- Structural and hydrodynamic mechanisms exist simultaneously to produce stiffness and damping.

Technical Accomplishments

Foil Bearings for H₂ Compressor

- Foil Bearing Dimensions
 - Journal Bearings
 - Diameter = 2.5" (63 mm)
 - Length = 2.0" (50 mm)
 - Projected Area = 5 in²
 - Thrust Bearings
 - Outer Radius = 3.265" (83 mm)
 - Pad Radial Length = .915" (23 mm)
- Bearing Coating
 - MiTi[®] Korolon[™] 900
 - 25 lb Load Capacity @ Start Up (N=0) Compressor Concept Sizing
- Bearing Stiffness
 - 20-30k lb/in/in
- Theoretical Load Capacity
 - 500 lb @ 800 fps

Hydrogen Compressor Simulator

Technical Accomplishments

Supercritical Operation

 Experimental plots of rotor run-up and coast down through bending critical speed

Excellent correlation between prediction and experimental results

Repeatable Response Through Bend

- Peak rotor response shown for 8 consecutive runs

 Bending Critical Speed Run-Up = <u>34.4 ± 0.1 krpm</u>
 Bending Critical Speed Coast Down = <u>34.3 ± 0.1</u>
 <u>krpm</u>
- Bending speed imposes ~93 lb dynamic load/bearing

Technical Accomplishments

Typical Lift-Off Test

DOE Hydrogen Program

Lift-Off Test Under Various Conditions

DOE Hydrogen Program

Project Summary: Bearing Test Results

- Bearing Durability Demonstrated
 - Through multiple touchdowns under high loads
 - 100 start/stops tests
- Bearings successfully tested under following conditions:
 - Beyond required loads
 - Tested with Air, Helium and to 500°F ambient temps
 - Experimentally measured bearing performance validated theoretical design predictions
 - Bearings endure high-speed labyrinth seal rub
- Simulator Rotor Super-Critical Operation Demonstrated
 - Bending critical exceeded multiple times
 - Excellent rotordynamic stability observed
- Maximum operating speed ~ 54,000 rpm (1600 fps)

Seal Selection

- Types Considered
 - Labyrinth
 - Brush
 - Honeycomb
 - Abradable
 - Dynamic Compliant Foil
- Issues
 - Leakage
 - Clearance
 - Differential Pressure
 - Wear Life and Debris
 - Material Compatibility

Foil Seal Concept

8.5" Foil Seal Developed at MiTi[®] and Independently Verified at NASA to 30,000 rpm

Mohawk Innovative

Technology, Inc.

US Patent: 6505837 Compliant Foil Seal

Foil & Labyrinth Seal Comparisons

Corrected Seal Flow Factor for Helium

Flow Factor Adjustment Was Based on Differences in Gas Constants Between Helium and Air

DOE Hydrogen Program

Coupled Elasto-Hydrodynamic Seal Analysis

Single Pad Stiffness Profile

DOE Hydrogen Program

Impact of Seal Design For H2

- Dynamic Compliant Foil Seal
 - Non contact, small clearance and compliant structure
 - Seal Design Parameters:
 - Differential Pressure Across Seal: 80-200 psig
 - Total Leakage = 13 to 30 lb/min
 - Leakage = 2% to 4.5% of Total Compressor Flow

Reduces Required Compressor Power by 3000 HP

Future Work for FY09

- Complete Rotor-Bearing Dynamic Testing and Final Report
- Conduct Seal Dynamic Testing
 - High-Pressures (>200 psig)
 - Operating Speeds (Suface Velocities > 1000 fps)
 - Temperatures to 500°F
 - Validate Established Coupled Elasto-Hydrodynamic Design Analysis Methodology

Project Summary - Seal

- Coupled Elasto-Hydrodynamic Seal Design Analysis Methodology Developed
- Preliminary Static Seal Testing Conducted:
 - 100 psig in Air
 - >200 psig in Helium
- Compliant Foil Seal Operation Demonstrated
 - Low Flow Factor and Leakage Substantially Less Than Labyrinth Seals
 - Close Clearance Film Riding Seal Operation Demonstrated
 - Testing at Pressures above 200 psig Successfully Completed

Hooshang Heshmat, PhD 518 862-4290 x-12 hheshmat@miti.cc

