



# Development of Highly Efficient Solid State Electrochemical Hydrogen Compressor (EHC)

Ludwig Lipp FuelCell Energy, Inc. May 19, 2009

Project ID # pdp\_22\_lipp

This presentation does not contain any proprietary, confidential, or otherwise restricted information

### **Overview**

#### Timeline: Phase II

- Start: August 2008
- End: August 2010
- 38% complete

### **Budget**

- Total project funding
  - DOE share \$750k
  - Contractor share \$218k
- Funding received in FY08: \$8.1k
- Funding for FY09: \$375k

#### **Barriers**

- Barriers addressed for gaseous hydrogen compression:
  - Improve reliability
  - Eliminate contamination
  - Improve energy efficiency
  - Reduce cost

#### **Partners**

- Sustainable Innovations, LLC
- University of Connecticut

### Relevance

### **Objectives:**

- Pressure Capability: Develop designs and materials to increase
  EHC pressure capability from 2,000 to 6,000 psi
- Operating Cost: Improve the cell performance to reduce power consumption (compression efficiency)
- Capital Cost: Reduce the EHC cell cost by increasing operating current density
- Life: Study thermal and water management options to increase system reliability and life

### Relevance

### **Impact of EHC:**

- Increases reliability/availability over current mechanical compressors
- Ensures "no possibility of lubricant contamination"
  (No moving parts) → Fuel Cell Quality H<sub>2</sub>
- Increases Compression Efficiency to 95% (DOE 2015 Target)
- Potentially reduces cost of H<sub>2</sub> delivery to <\$1/gge</li>
  (DOE Long Term Target)



## **Approach**

- Use high-pressure electrolyzer experience for mechanically robust cell design
- Higher current density operation to minimize capital and operating costs
- Improved flow field design to increase H<sub>2</sub> recovery efficiency
- Simple system: Reduce capital cost by reducing catalyst loading and humidification requirements

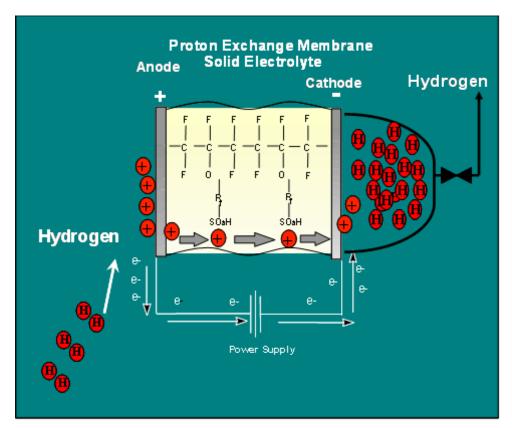
### **Milestones**


| Parameter                           | FY08 Goals             | FY09 Goals             | Current Status                |
|-------------------------------------|------------------------|------------------------|-------------------------------|
| Hydrogen Product Pressure           | 2,000 psi              | Up to 6,000 psi        | 4,500 psi                     |
| Minimize Hydrogen<br>Inlet Pressure | 30 psig                | 5 psig                 | < 5 psig ✓                    |
| Compression Ratio                   | 40:1                   | Up to 300:1            | 300:1 ✓                       |
| Hydrogen Recovery<br>Efficiency     | 90%                    | 96%                    | Up to 95%                     |
| Pressure Cycling                    | 10 cycles to 2,000 psi | 50 cycles to 4,500 psi | >1,000 cycles to<br>3,000 psi |
| Life Testing                        | 50 hrs at 2,000 psi    | 500 hrs at 4,500 psi   | ~3,000 hrs at 3,000 psi       |
| No. of Cells in Stack               | 1                      | 3                      | 3 ✓                           |

#### All FY08 Milestones Exceeded

• Three FY09 Milestones Met already, on Track to Meet all FY09 Goals




## **Enabler for Hydrogen Infrastructure**



#### The EHC Technology has Unique Synergy to the Hydrogen Energy Stations

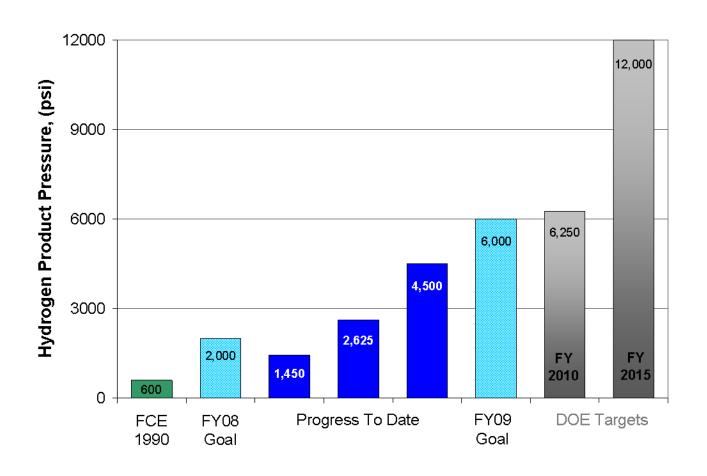


## Principle of an Electrochemical Hydrogen Compressor



- Simple Operating Principle with No Moving Parts Solid State!
  - Use of Hydrogen Electrode for High Compression Efficiency

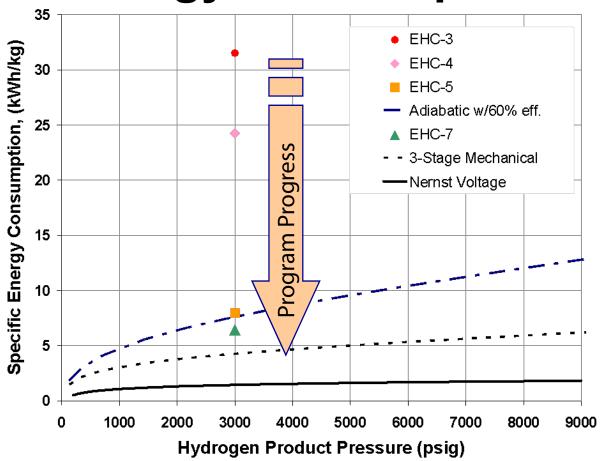



## **Technical Accomplishments**

### EHC short stack operation demonstrated

- Compression Mode Operation: Increased capability from 3,000 psi to 4,500 psi in a single stage EHC cell (300:1 compression ratio)
- Compression Efficiency: Reduced cell resistance by 70% → energy consumption comparable to mechanical compressors
- Pressure Cycling: Completed >1,000 pressure cycles from 100 to 3,000 psi without performance loss
- Stack: Scaled-up EHC technology from single cell to 3-cell stack (up to 3,000 psi)

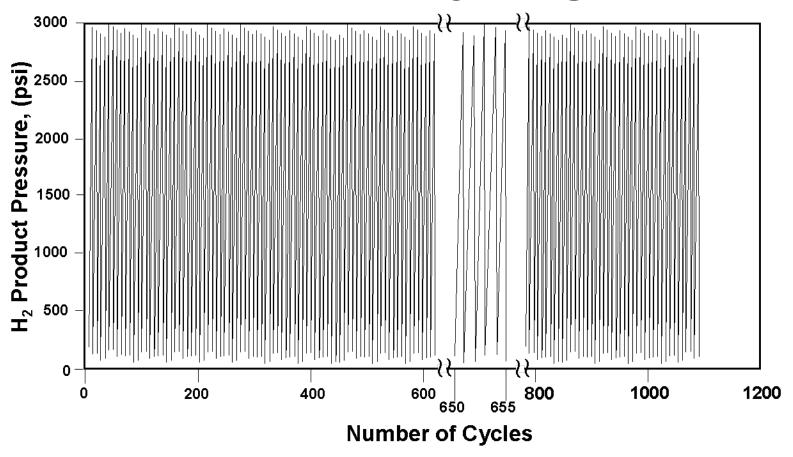



## **Hydrogen Product Pressure**



- Met FY08 Pressure Goal
- On Track to Meet FY09 Pressure Goal




## **Energy Consumption**



Significant Reduction in EHC Specific Energy Consumption Achieved



## **Pressure Cycling**



> 1,000 Pressure Cycles to 3,000 psi Validates Robust Cell Design



### **Collaborations**

#### **Prime**

- FuelCell Energy, Inc.\* (Industry):
  - Leading fuel cell developer for over 30 years

#### **Subcontractors**

- Sustainable Innovations, LLC\* (Industry):
  - Cell and stack design and fabrication
- University of Connecticut\* (Academic):
  - Identification and evaluation of low-cost materials

<sup>\*</sup> Within DOE H<sub>2</sub> Program



## **Proposed Future Work**

- Increase pressure capability of single-stage EHC cell from 4,500 to 6,000 psi
- Further reduce power consumption of current design
- Develop and validate multi-cell stack design in a 10-cell stack
- Demonstrate 2 lb/day H<sub>2</sub> at 3,000 psi
- Increase hydrogen recovery to 98%
- Demonstrate 2,000 hr life at 6,000 psi in single cell
- Estimate capital and operating costs

## **Project Summary**

- Relevance: Provide highly efficient, reliable and costeffective hydrogen compression (up to 6,000 psi)
- Approach: Develop electrochemical compressor solid state device
- Technical Accomplishments: Demonstrated singlestage compression to 4,500 psi, operated 3-cell stack
- Collaborations: Active partnership with industry (Sustainable Innovations) and University (UConn) on materials, design and fabrication
- Proposed Future Work: Further increase pressure, efficiency and throughput (2 lb/day H<sub>2</sub> at 3,000 psi)



## Acknowledgements

- DOE: Monterey Gardiner, Richard Farmer,
  Tim Armstrong
- Sustainable Innovations, LLC: Trent Molter,
  Mark Dristy
- FCE: Jonathan Malwitz, Ray Kopp, Pinakin Patel