

Martin A Shimko Project # pdp_23_shimko 2009 DOE Merit Review Gas Equipment Engineering Corporation May 19, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

H2 Liquefier Development Program

GEECO:

Avalence:

MIT:

Timeline

Restart Date: Jan 2007 End Date: Sept 2011 Percent Complete: 40%

Budget

Project Funding: \$2.52M DOE: \$2.00M \$0.52M Contractor: \$161K Received in FY06 \$394K Received in FY07 \$587K Spent for FY08 \$113K Remaining for FY09

Barrier Addressed

High Cost and Low Efficiency of Hydrogen Liquefaction

Partners

Detailed Design Liquefier Fabrication System Testing System Integration Cycle Design Catalytic HXC Design **R&D Dynamic:** TBX Design and Fab

Refined Project Objectives

- Design a Practical H2 Liquefaction Cycle That Significantly Increase Efficiencies Over Existing Technologies
- Produce a small-scale (100 500 kg/day) hardware demonstration of a hydrogen liquefaction plant
- Use Low/No Risk Development Components That Scale to 50,000 kg/day Plant Size
- Document a Significant Reduction in the Total Cost of H2 Liquefaction at the 50,000 kg/day Production Level

Overall Project Schedule

Revised to:

➢Reflect Project Restart in Jan '07

- Limited Component Development and Demonstration Phase Consistent with FY '08 Funding
- Focus is on The Catalytic Heat Exchanger Development
- Complete Component Development and Produce Full Pilot Plant Demonstration if Future Funds Allocated

Cycle Design												
Equipment Specification and System Desig	n											
Develop Catalytic Heat Exchangers												
Develop Turbo Expanders												
Develop Hydraulic Expander												
Procure Major Components												
Build Demonstration Plant												
Test Demonstration Plant												

Near-Term Project Schedule

Key Component To Develop Identified as Catalytic Heat Exchanger Complete Catalytic Heat Exchanger Fabrication and Testing by End of 2009

PROJECT TIME LINE		2008					2009												
	June	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec
Catalyst Investigation																			
CHEX Numerical Modeling																			
Design Test Apparatus																			
Para/Ortho Measurement Devise																			
Design CHEX (Heat Exchanger)																			
Build Test Apparatus																			
Test Adiabatic Test Article																			
Refine Pilot Plant Design																			
Test CHEX																			
Evaluate and Report																			

Catalyst Characteristic's Effect on Temperature Profile and Efficiency

Pilot Plant Performance	n ovelo	W net
Sinualion		(KVVI/KY)
Adiabatic Catalyst Beds	19.76	19.69
lsothermal Catalyst Beds	22.14	17.57
Continuous Catalytic Heat Exchangers	23.33	16.67

Developed a Numerical Model Using MATLAB and COMSOL Multiphysics

-8-

CHEX Simulation Program

"Satisfactory" Step Size Identified Results Show Pressure Independence

CHEX Simulation Program

Plii

0

0

0.2

0.4

0.6

0.8

Radius [m]

Constant Wall **Temperature Bed**

0.25

Min: 0.250

1.2

1.4

1.6

x10³

CHEX Test Apparatus

Development of pH₂ Detector

- pH₂ detectors are not commercially available
- pH₂ concentration can be deduced from thermal conductivity measurement
- Commercial thermal conductivity detectors (TCDs) are not designed for use at LN₂ temperature

Commercially available TCD components made by GOW-MAC

AC Bridge pH₂ Measurement Configuration

Sample AC Bridge Results

Initial measurements indicate that the pH₂ concentration can be resolved to 0.35%

2D Packed Bed Models

Temperature

-19-

2D Counterflow Packed Bed Model

effectively catalyzes the o-p conversion in a small space

- Completed Development and Validated Accuracy of CHEX Numerical Model
- Finished Design of CHEX Article Test Apparatus
- Sensor for Measuring para/ortho Make-Up Fabricated and Performance Verified
- Model Shows That Typical Heat Exchanger Channel Dimensions are Satisfactory for Pressure Drop, Heat Exchange, and Catalyst Reaction Rate Criteria

Plan For Remainder of 2009

≻Q2 '09

- Finish Design and Build of Test Apparatus
- Build Adiabatic Catalyst Bed
- Design CHEX
- ≻Q3 '09
 - Test Adiabatic Catalyst Bed
 - ➢Build CHEX
- ≻Q4 '09
 - ≻Test CHEX
 - Assess and Report