Composite Technology for Hydrogen Pipelines

Barton Smith, Barbara Frame, Lawrence Anovitz

Oak Ridge National Laboratory

Annual Merit Review Arlington, Virginia May 19, 2009

Project ID #: PDP_24_Smith

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: Jan 2005
- Finish: Project continuation & direction determined annually by DOE

Budget

- Total project funding – DOE: \$1.65M
- Funding received in FY 08

 \$600k
 \$600k
- Funding for FY 09

2 Managed by UT-Battelle for the Department of Energy

Barriers

- D. High Capital Cost and Hydrogen Embrittlement of pipelines
- Technical Targets on next slide

Partners & Collaborators

- Fiberspar, PolyFlow
- Arkema, Ticona, Fluoro-Seal
- SRNL
- Pipeline Working Group

Overview

Technical Targets

Category	2005 Status	2012	2017	
Pipelines: Transmission				
Total Capital Investment (16-in pipeline, \$/mile)	\$720k	\$600k	\$490k	
Pipelines: Distribution				
Total Capital Investment (2-inch pipeline, \$/mile)	\$320k	\$270k	\$190k	
Pipelines: Transmission and Distribution				
Reliability/Integrity (including 3rd-party damage issues)	Acceptable for current service		Acceptable for H ₂ as a major energy carrier	
H ₂ Leakage *	Undefined	TBD	< 0.5%	

* Leakage targets are being reviewed by the Delivery Tech Team


Project Milestones

Month-Year	Milestone or Go/No-Go Decision
Sep 2008	Milestone: Survey of existing modifications and treatments available for reducing permeability in liner materials completed and reported (completed) Milestone: Recommendations for sensor integration, manufacturing and joining technologies completed and reported (50% complete)
May 2009	Milestone: Hydrogen compatibility evaluations of composite pipeline materials and construction completed (60% complete).

Technical Accomplishments-Initial Compatibility Testing Completed

- Pipeline materials compatibility testing
 - Hydrogen compatibility testing following eightmonth accelerated-aging protocol showed no quantifiable materials degradation
 - Hydrogen leakage measurements in Fiberspar pipeline yielded smaller than predicted leak rates (<0.02% per day); Leakage measurements on PolyFlow FRP pipeline are in progress
 - Fiberspar FRP pipeline specimen passed blowdown testing with hydrogen

H₂ exposure station at SRNL

Pipeline test specimens

Leakage measurement at ORNL

Technical Accomplishments-Evaluation of Joining Technologies is Progressing

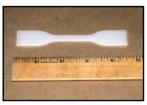
- Joining and sensor technologies
 - Hydrogen leakage through Fiberspar LinePipe™ connectors is very low, <3x10⁻⁶ mol/s
 - Collaborative effort underway with SRNL to assess joint loading, pipeline flexure, and pressure/temperature cycling on hydrogen leakage for both Fiberspar and PolyFlow connectors

FiberSpar connector with compressive o-ring seals

PolyFlow swaged connector

Completed H₂ compatibility screening of Fiberspar pipeline and materials

- Accelerated aging procedure used to screen for long-term effects of hydrogen exposure on composite pipeline under normal-usage conditions
- Completed post-treatment tests of Fiberspar pipeline and constituent materials
 - Immersion in 1000 psi H₂
 - Accelerated aging at 60°C for 8 months (equivalent to 5+ years at RT)
 - No deleterious effects due to H₂ noted in qualification testing of pipelines or tensile and DMA testing of polymer and composite matrix resin specimens


4-pt bending test specimen

Compression test specimen

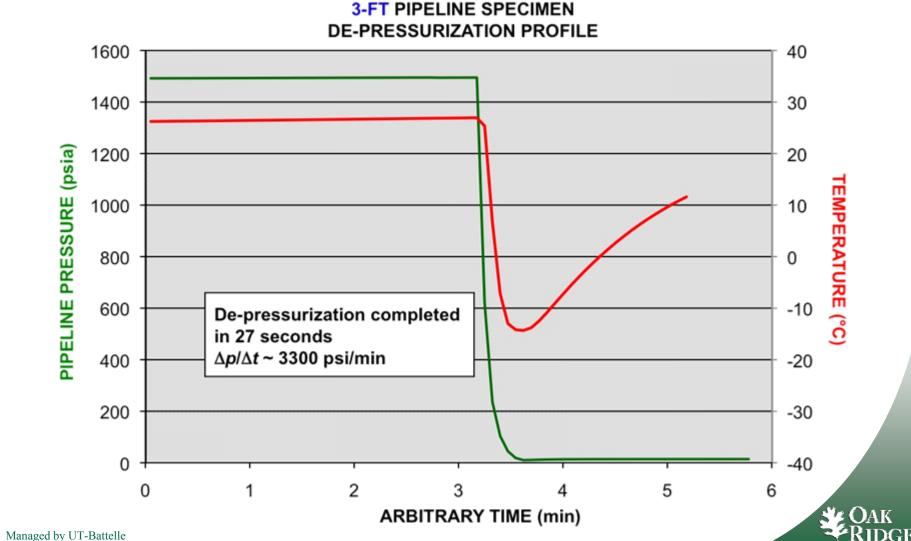
SRNL H₂ exposure station

Liner test specimen

Glass filament specimen

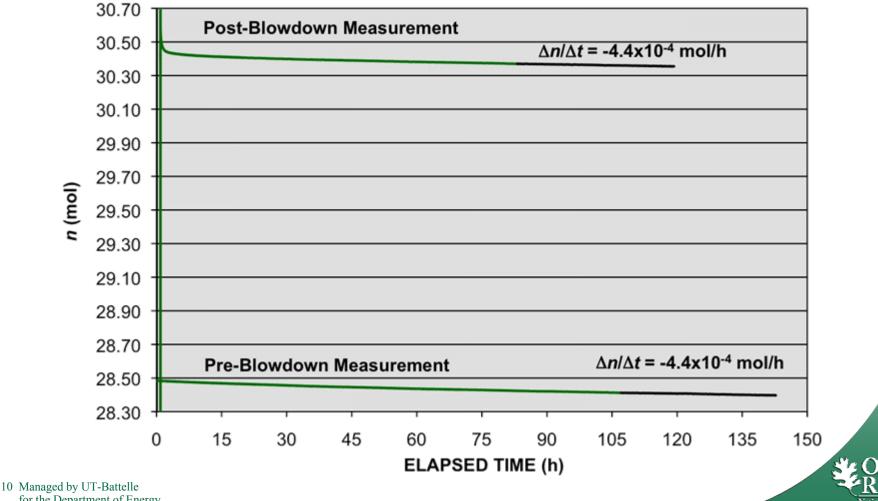
Hydrogen blowdown testing of composite pipeline

- Guidance: API 15S Qualification of Spoolable Reinforced Plastic Line Pipe, Appendix D
 - Specimen filled with hydrogen* to pressure rating, specimen heated to temperature rating, these conditions held until pipeline structure is saturated with gas
 - Following hold period, specimen depressurize at a rate greater than 1000 psi/min
 - Following blowdown, specimen liner was examined and no visual evidences of liner blistering or collapse


3-ft pipeline specimen being instrumented for blowdown testing

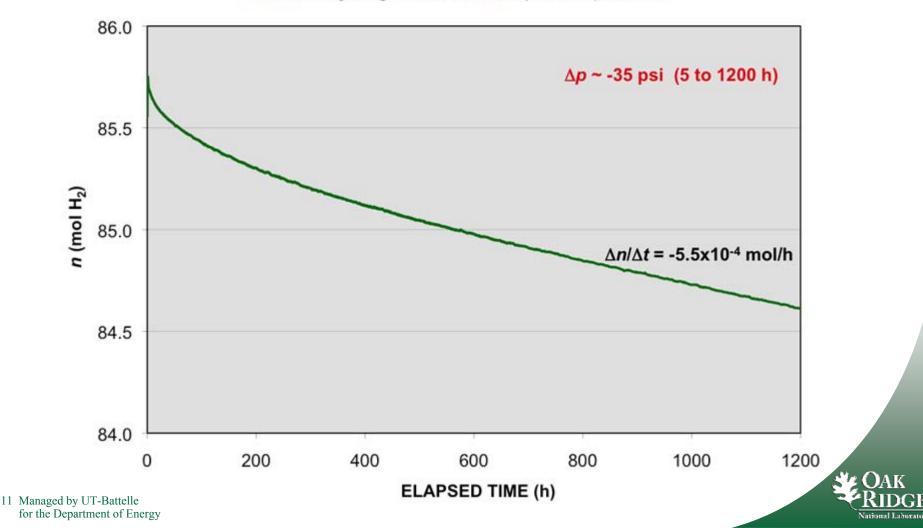
*API 15S specifies the use of supercritical CO₂ for blowdown testing

Blowdown de-pressurization rate was 3X specified minimum rate


HYDROGEN BLOWDOWN TEST IN FIBERSPAR LP 4-1/2 1,500(E)

for the Department of Energy

Post-blowdown leakage rate was identical to pre-blowdown rate


FIBERSPAR PIPELINE LEAKAGE MEASUREMENT Nominal 1500 psia Pressurization Moles of Hydrogen Gas in 3-ft Pipeline Specimen

for the Department of Energy

Actual H₂ leakage rate is nearly 50X below predicted rate

FIBERSPAR PIPELINE LEAKAGE MEASUREMENT Nominal 1500 psi Pressurization Moles of Hydrogen Gas in 9-ft Pipeline Specimen

Summary of H₂ leakage rate measurements for Fiberspar LinePipe[™]

Start Date	Specimen	Nominal Pressure	Leakage Rate (mol/h)
5/15/08	3-ft pre-blowdown	1500 psi	-4.4x10 ⁻⁴
5/22/08	3-ft post-blowdown	1500	-4.4x10 ⁻⁴
6/3/08	3-ft post-blowdown	500	(+7.6x10 ⁻⁵)
3/26/08	6-ft	1500	-5.5x10 ⁻⁴
4/7/08	6-ft	500	(+3x10 ⁻⁴)
8/25/08	9-ft	1500	-5.5x10 ⁻⁴

mal Laboratory

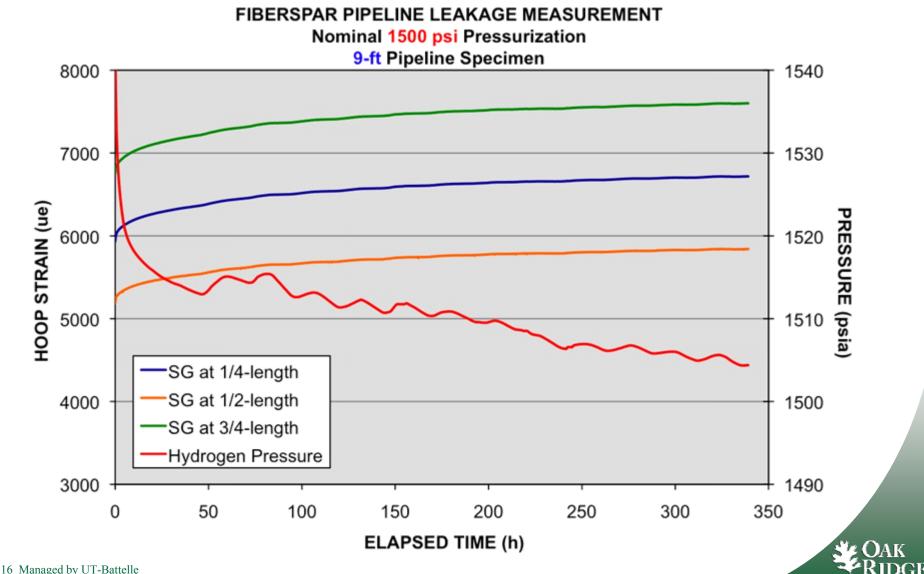
Summary of H₂ leakage rate measurements to date

Specimen Length	Nominal Pressure (psig)	Measured Leakage Rate (mol/h)	Predicted Leakage Rate (mol/h)
3-ft	1500	-4.4x10 ⁻⁴	-8.2x10 ⁻³
6-ft	1500	-5.5x10 ⁻⁴	-1.6x10 ⁻²
9-ft	1500	-5.5x10 ⁻⁴	-2.5x10 ⁻²

In most extensive test to-date, hydrogen lost due to permeation and leakage through end cap seals was less than 0.02% per day. The rate is 45 times below the predicted value for HDPE (PE-3408) liner.

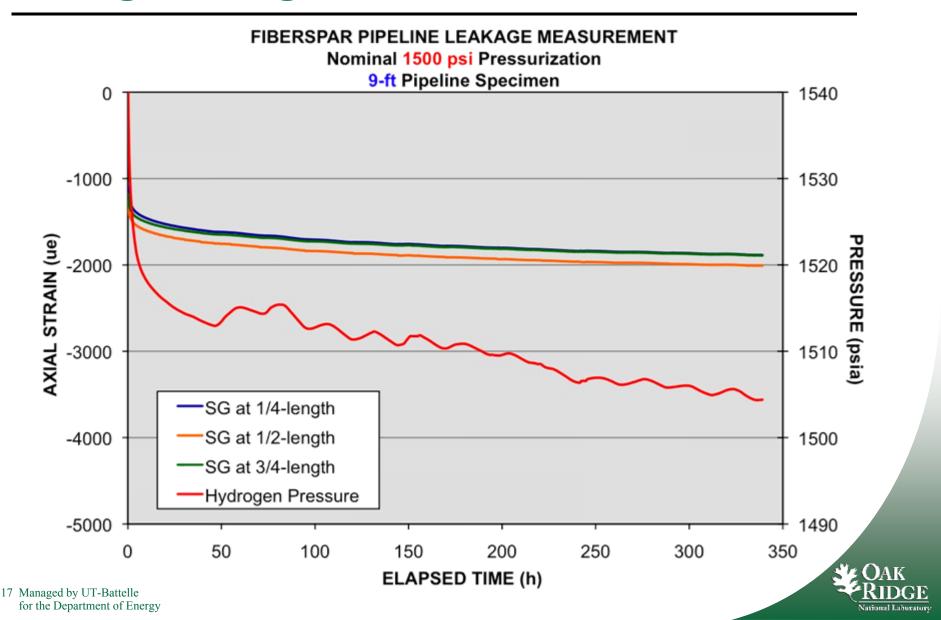
Summary of H₂ leakage rate measurements to date

- Loss due to leakage is much lower than expected (and might be good enough to meet leakage target)
- Reinforcement layer might be providing some gas barrier benefit but probably can't account for full extent of discrepancy between predicted and measured values
- Rapid decompression of pipeline is probably not going to be a failure mechanism for liner
- Joints with elastomeric seals have worked well (so far)

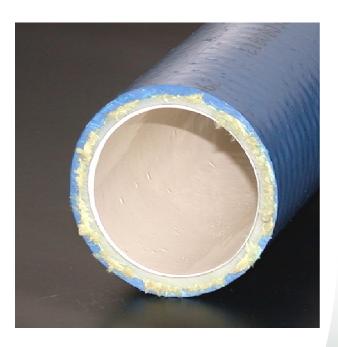


Future directions for H₂ leakage rate measurements in Fiberspar FRP pipeline

- Subject specimens to 4-pt bend testing to reveal the extent of how microcracking increases permeation and leakage
- Measure pressure as a function of depth in wall or within composite layers



Hoop strain in Fiberspar FRP pipeline during leakage measurements


for the Department of Energy

Axial strain in Fiberspar FRP pipeline during leakage measurements

H₂ leakage rate measurements in PolyFlow Thermoflex[®] Reinforced Pipe

- Liner: Coextruded PPS and PA-6
- Reinforcement: aramid fiber rovings braided on liner, laid over four longitudinal rovings
- Burst strength determined by braid angle, not by number of plies
- PP jacket with damage indicating colorant
- Couplings with swaged metal seals
- Leakage rate measurements in progress

Future Work

- FY 2009
 - Report test results from 8-month accelerated aging and hydrogen exposure of pipeline and material specimens
 - Continue measurements of liner materials, including measurements of surface fluorination samples, using new diffusion and permeation measurement apparatus for polymers with additional capabilities
 - Begin assessment of possible hydrogen-induced cracking in the reinforcement layers during cyclical strain, perform long-term stress rupture tests, perform high-pressure cyclical fatigue tests, assess joint sealing under cyclic loading
 - Collaborate on development of codes & standards for hydrogen-service FRP pipelines
- FY 2010
 - Coordinate initial field test of FRP pipeline for hydrogen service, providing springboard for commercially viable demonstration project

Project Summary

Relevance:	Need viable alternative to metallic pipelines to
	achieve cost and performance targets for
	hydrogen transmission and distribution

- Approach: Investigate applicability of commercially available FRP polymer pipelines and develop path forward for hydrogen delivery
- Progress: Cost scenario shows composite pipelines can meet DOE 2012 goals and are close to 2017 goals; hydrogen compatibility of pipeline materials is acceptable; pipeline leakage rates are lower than predicted

Collaborations: Pipeline and polymer industries, National Lab

Future:Codes & standards; prototype FRP pipelinesystem for H2 delivery; demonstration project

