Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials

> Bruce Clemens Stanford University Project ID#: st_02_clemens 05/19/2009

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project Start Date: January 2005
- Project End Date: 2/28/2010
- Percent Completion: ~80%

Budget

- Total Project Funding: \$997,921
 - DOE Share: \$778,828
 - Contractor Share: \$199,093
- Funding Received FY08: \$150,000/\$37,500
- Funding Received FY09: \$150,000/\$37,500 (Planned)

Barriers Addressed

- **B:** Weight and Volume
- M: Hydrogen Capacity and Reversibility
- N: Lack of Understanding of Hydrogen Physisorption and Chemisorption.

Partners

- HRL Laboratories: collaborations about new material systems and complex/destabilized hydride system development
- University of Pittsburgh: collaborated to obtain interfacial energies for Mg/MgH₂ interface
- NIST Center for Neutron Research: collaboration to investigate reacting films using neutron reflectivity

1

- Develop fundamental understanding of metal hydride reaction kinetics
 - Kinetics limit practicality and reversibility of many promising metal hydride material systems
 - Mg, Mg₂Si, Mg(AlH₄)₂, Li₄Si, NaAlH₄, LiBH₄+MgH₂, etc.
 - Initial work on Mg₂Si showed that kinetic issues prevent system from achieving reversibility
 - Catalyst additions have shown some success in improving kinetics for some systems (ie. Ti in NaAlH₄), but little is known about the nature of these effects
 - Little is known about the kinetic mechanisms present in these systems, and in order to improve the kinetics for any of these metal hydride systems a sound understanding must be developed

• Develop understanding of metal hydride nanostructure thermodynamics

- Many systems suffer from inappropriate thermodynamics (equilibrium pressure)
 - Mg, Al
- Continuum modeling suggests that reaction thermodynamics should be modified by reducing particle size to the nanometer regime
- Develop understanding of metal hydride structures during phase change
 - Material structure can play important role in reaction kinetics, especially during solid-state phase transformations such as those in metal hydride reactions
 - Understanding the interplay between material structure and reaction kinetics may provide insight on how to successfully engineer new materials with improved kinetics and storage properties

Approach

Thin Film Model Systems

- Physical vapor deposition allows nearly atomic level composition control
- Appropriate substrate choices allow for microstructural control
- Initial experiments with Mg films have validated the approach as results concur with bulk Mg measurements where appropriate
 - Diffusion limited hydride growth, crystallographic orientations

In-Situ Structural Characterization

- Custom designed hydrogen pressure chamber for x-ray studies
- Real time structural analysis for kinetic studies (refueling time)
- Thin Film and Nanoparticle Uptake Monitoring
 - Quartz crystal microbalance (QCM) chamber for thermodynamic measurements (P_{eq}) in thin film and nanoparticle samples
- Transition To More Complex Material Systems
 - After establishing techniques and approaches using model system, move to two component system (Mg/Ti, Mg/Al) and then more complex systems involving mass transport and phase segregation

Approach - Milestones

Date	Milestone or Go/No-Go Decision
07/2008	Milestone: Model kinetic transformation processes for thin film metal hydride material systems.
	Status: New model developed to describe moving planar interface kinetics in thin film samples
05/2008	Milestone: Investigate structural correlations in other material systems. Status: New material systems introduced into all aspects of research: Mg/Al, Mg/Ti. Nanostructured materials under investigation.
03/2008	Milestone: Investigate effects of cycling on new material kinetics.
	Status: Data collected for Mg/Ti system with cycling, data processing underway and results forthcoming.
10/2008	Milestone: Measure thermodynamics of nanoparticle phase transformations and begin verification of model.
	Status: First (mixed) results obtained for nano-Mg system. Verification of results underway.

Progress – Mg₂Si System

- System exhibits very poor kinetics for reverse reaction and previous work showed little evidence for reversibility at length scales down to 5 nm
 - Trend seen in data after processing between layer thickness and Mg₂Si peak intensity reduction
 - Undertook *new* study with careful data analysis
- Multilayer samples allow analysis of very small reaction depths using XRD

Before Hydrogen

- New analysis shows reaction depth < 0.5 nm
 - Attempted to charge samples by cooling them from 240 to 70 °C at 12 °C h⁻¹ in 200 bar H₂
- Particle sizes <1 nm needed to achieve complete hydrogenation from Mg₂Si phase
 - Phase transition **not** limited by hydrogen diffusion through Mg₂Si or nucleation of MgH₂ phase (separate experiments)
 - Reverse reaction kinetics severely limited by transport of Mg and Si during phase segregation from Mg₂Si into MgH₂ and Si
- Very small reaction depth makes the system impractical for reversible hydrogen storage downselected
 - Thin film + XRD approach very powerful way to examine kinetic limitations

Hydrogen diffusion >> host diffusion

Progress – Mg/Al System

- Apply thin film methods to new material system with kinetic problems (like Mg₂Si)
 - $Mg(AIH_4)_2 \rightarrow MgH_2 + 2AI + 3H_2$
 - Reverse reaction very difficult
 - Varying reports of thermodynamic parameters in literature

Our approach:

- Mg/Al multilayer films with Pd capping layer
- Vary relative amount of Al in each film
- Examine amount of Al before/after hydrogen exposure to deduce reaction extent (if any)
- Issues:
 - Layers deposited as superlattices due to Counts (arb.) lattice parameter similarities
 - XRD analysis not straighforward •
 - Layers intermixing at room temperature over a few days
 - Hydrogen diffusion

7

Progress – Mg/Al System

- After hydrogen annealing under 1 bar H₂ at 110 °C for 10-20 hrs took new XRD spectra
 - Some spectra identical to those taken before annealing
 - Others show intermetallic phases
- Films do not seem to readily react with H₂
 - No MgH₂ formation seen
 - Evidence for alloy formation after annealing
 - Al or Mg/Al alloy seems to block hydrogen diffusion or doesn't form hydride phase
- New samples needed to probe kinetics further
 - Single Mg film with AI (varying thickness) between it and Pd layer to probe hydrogen diffusion through thin AI layers

- Previous *in-situ* XRD data showed evidence for moving planar interface hydride growth kinetics
 - Described with kinetic model based on silicon oxidation described by Deal and Grove¹ (previous results)
 - Model predictions diverged from data for long times
- This year developed model further to account for thin film nature of samples
 - Include cutoff where growing hydride layer reaches substrate
 - Better describes geometry of our samples

¹B. E. Deal and A. S. Grove, J. App. Phys. **36** 3770 (1965)

- Build model by considering • concentration profile across sample
- Sieverts' Law for gas to Pd transport: ٠

$$c_s = K_s \sqrt{p}$$

Chemical Potential Flux proportional to chemical potential drop across interfaces:

$$\boldsymbol{J} = k_1(\mu_1 - \mu_2)$$

Fick's First Law across layers: ٠

$$\boldsymbol{J} = -M\nabla\mu = -M\frac{\mathrm{d}\mu}{\mathrm{d}x}$$

Assume concentration in Mg is zero:

$$c_{Mg} = 0$$

All flux into Mg creates MgH₂:

$$\boldsymbol{J} = N_1 \frac{\mathrm{d}x_2}{\mathrm{d}t}$$

$$x_2(t)^2 + \frac{2\psi}{\phi}x_2(t) = \frac{2\alpha}{\phi N_1}t + \frac{2\psi}{\phi}x_1 + x_1^2$$
$$x_2(t) = \chi \pm \sqrt{a+bt}$$

New model better describes the data

- Hydride formation kinetics limited by diffusion (~t^{1/2}) of H through the growing MgH₂ layer for long times
 - ~ 50 hr to hydrogenate 1 μ m thick film under our conditions (5.7 bar, 125 °C)
- Reaction limited (~t) regime confined to thicknesses < 60 nm from examination of data
- Structures should have critical dimensions < 120 nm to improve kinetics (avoid diffusive control)
- Comparison of different thickness samples shows agreement with moving interface growth

- Previously observed solid phase epitaxial (SPE) regrowth of Mg/MgH₂ films motivates kinetic study
 - Observed in x-ray diffraction rocking curve development during hydrogen discharge
- Provides motivation for future development of comprehensive model to describe material cycling
 - Where does new Mg grow/nucleate from?
 - What kinetic mechanisms operate in composite materials/thin films during hydrogen charging/discharging?
 - How can kinetics for different material architectures be improved?
 - Under what cycling conditions is regrowth of existing metal template (SPE) faster than nucleation of new metal phase?

Progress – Nanoscale Mg

- Continuum modeling (previous work) predicts enhanced equilibrium pressure in MgH₂ with reduced particle size
 - Particles with r = 2 nm should have P_{eq} = 1 atm at T~100 °C
- Mg nanoparticles hard to handle
 - Oxidation, agglomeration, etc.
- Same effect should happen in very thin Mg films
 - Deposit multilayer films (separated by Pd layers) with varying Mg thicknesses onto quartz crystal microbalance (QCM) crystal for P_{eq} vs T analysis

$$\begin{split} P^r_{\rm H_2(eq)} = \exp\left[\frac{\Delta G^\circ}{RT} + \frac{2\Delta\gamma V^{\rm Mg}_M}{r_{\rm Mg}RT}\right] \\ \Delta\gamma = 1.74~{\rm J/m^2} \end{split}$$

Progress – Nanoscale Mg

QCM data collection procedure:

- Sample and chamber controlled at fixed temperature
- Process gas (pure H₂ or mixture) bled in via leak valve
- Crystal frequency constantly monitored
 - Frequency down = mass uptake
- Pressure stepped up until uptake seen
- Pressure reduced until uptake halts
- P_{eq} then taken as average of last point where uptake seen and point where uptake ceases

20x(5 nm Mg+ 10 nm Pd) + 25 nm Pd Sample at 358 K

Progress – Nanoscale Mg

- Thick film (400 mn) agrees well with literature values for film/bulk absorption
- Thinnest film sample (5 nm) shows preliminary P_{eq} consistent with bulk measurements
 - Modeling predicts effect for this size, but very sensitive to surface energy differences
- QCM able to measure P_{eq} in very small samples: early results show little to no effect for very thin films, but results need verification

²Krozer, et al, J. Less-Common Metals, **160** 323 (1990)

- Previous work showed 42% faster uptake kinetics in epitaxial Mg films with 10 wt. % Ti addition
 - Does the addition of Ti in Mg alter the thermodynamics as well?
- Examine Mg + Ti films using QCM to monitor P_{eq} vs T to determine thermodynamic properties
 - 10 wt % Ti in Mg + Pd capping layer
 - Samples deposit as single phase hcp Mg with Ti in solid solution for all compositions attempted

Progress – Mg/Ti System

- Addition of 10 wt % Ti results in ~10x increase in P_{eq} compared to pure Mg
 - ΔH comparable to literature calculations³ (-55 kJ/mol (this work) vs -51.6 kJ/mol (literature) for Mg_{.8}Ti_{.2}H₂)
 - P_{eq} values comparable to other literature reports for this system^{4,5}
- Further work needed to verify and examine effects of Ti concentration on P_{eq}

Progress – Neutron Reflectivity with NIST

- Previous results showed large changes to neutron reflectivity spectra in Mg/Pd multilayers with hydrogen (deuterium) introduction
 - Modeling the spectra resulted in some success – hydrogen profile through structure
 - Want to look at single layer films to verify and reveal details about hydrogenation model (interface roughness, motion, sharpness, etc.)
- Sent single layer sample to NIST
 - No changes in NR seen before/after hydrogen loading
 - Sample suffered from surface oxidation
 - Significant MgO formation detected

٠

19

Progress – Neutron Reflectivity with NIST

- New samples to include thicker Pd capping layer over 100 nm Mg
- Modeling shows that hydride formation should still be detected with new layer thicknesses
 - Neutron reflectivity spectra show distinct differences with and without hydrogen
- With better samples and procedures neutron reflectivity should reveal important details of metal/hydride interface characteristics

- Collaborated with HRL team on the new Mg₂Si experiment
 - Samples fabricated and initial XRD at Stanford, sent to HRL for hydrogenation and additional XRD
- Ongoing collaboration with NIST team to investigate Mg/MgH₂ interfacial motion in thin film samples using neutron reflectivity

Future Work

- Continue data collection and analysis
 with QCM chamber
 - Find and exploit the limits of hydrogen uptake sensitivity for the instrument
 - Attempt to confirm theoretical predictions about the change in equilibrium pressure as particle size is reduced
 - Examine kinetics and thermodynamics for thin film and nanoparticle samples

Finish Mg/AI study

- New film architectures
- Higher pressure H₂ anneals
- Faster turnaround to prevent intermixing
- Finalize nanoscale Mg study
 - Thinner Mg layers on QCM
 - Careful measurements on existing samples

- Further develop MgH₂ kinetic model
 - Develop general model to describe reverse reaction and phase growth with cycling

• Continue/finalize Mg/Ti study

- Examine different Ti concentrations to look for P_{eq} differences and trends
- Examine cycling behavior of Ti-doped Mg films compared to pure Mg
- Continue with neutron reflectivity study on Mg/MgH₂ thin films with NIST
 - Determine more specifics of reaction kinetics
 - Interface motion/roughness/sharpness/etc.
 - Utilize new *in-situ* hydrogen loading chamber at NIST
 - Develop new models to describe data and incorporate findings into MgH₂ growth model

Summary

- **Relevance:**
 - Reveal fundamental reaction mechanisms in metal hydride phase transformations to address kinetic limitations that plague nearly all candidate metal hydride material systems
- Approach:
 - Utilize well controlled thin film model systems and *in-situ* characterization to investigate kinetic mechanisms in metal hydride material systems
- **Technical Accomplishments:**
 - Reaction depth into $Mg_2Si < 1$ nm, making system impractical for reversible storage
 - Hydride growth kinetic experiments support moving planar interface model, < 60 nm of reaction controlled growth from data anything thicker suffers from diffusion limited growth (slower)
 - QCM chamber able to detect P_{eq} in very thin Mg layers, no size vs P_{eq} dependence seen yet Addition of 5 % Ti in Mg gives ~10x increse in P_{eq} , verification needed with further study

 - Mg/AI kinetic study underway using multilayer film/XRD approach successfully used with Mg₂Si
 - Neutron reflectivity with NIST should provide details about thin film hydride growth model
- **Collaborations:**
 - Collaboration with NIST to utilize neutron capabilities to complement x-ray work
 - Collaboration with HRL to examine reaction depth in Mg₂Si system
- Future Work:
 - Finalize QCM studies of nanoscale Mg system does size change MgH₂ thermodynamics?
 - Continue Mg/Ti study to examine P_{eq} and cycling behavior dependence on Ti alloying content
 - Finish Mg/AI study using thin film approach to study reaction depth and limiting kinetic mechanisms
 - Finalize neutron reflectivity study of thin film metal hydride reactions to reveal reaction details

